Kevin Arrigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5919961/publications.pdf

Version: 2024-02-01

14655 12946 18,875 155 66 131 citations h-index g-index papers 162 162 162 12436 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Increases in Benthic Particulate Export and Sedimentary Denitrification in the Northern Chukchi Sea Tied to Underâ€kee Primary Production. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	3
2	Springtime phytoplankton responses to light and iron availability along the western Antarctic Peninsula. Limnology and Oceanography, 2022, 67, 800-815.	3.1	2
3	Seasonal Water Mass Evolution and Nonâ€Redfield Dynamics Enhance CO ₂ Uptake in the Chukchi Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	5
4	Massive Southern Ocean phytoplankton bloom fed by iron of possible hydrothermal origin. Nature Communications, 2021, 12, 1211.	12.8	25
5	Physical Controls on the Macrofaunal Benthic Biomass in Barrow Canyon, Chukchi Sea. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017091.	2.6	4
6	Fe-binding organic ligands in coastal and frontal regions of the western Antarctic Peninsula. Biogeosciences, 2021, 18, 4587-4601.	3. 3	7
7	UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System. ISME Communications, 2021, 1, .	4.2	17
8	Changes in Underâ€ice Primary Production in the Chukchi Sea From 1988 to 2018. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017483.	2.6	7
9	The distribution of Fe across the shelf of the Western Antarctic Peninsula at the start of the phytoplankton growing season. Marine Chemistry, 2021, , 104066.	2.3	3
10	Under-Ice Phytoplankton Blooms: Shedding Light on the "Invisible―Part of Arctic Primary Production. Frontiers in Marine Science, 2020, 7, .	2.5	60
11	Dissolved Trace Metals in the Ross Sea. Frontiers in Marine Science, 2020, 7, .	2.5	21
12	The Atlantic Water Boundary Current in the Chukchi Borderland and Southern Canada Basin. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016197.	2.6	15
13	Summer Highâ€Wind Events and Phytoplankton Productivity in the Arctic Ocean. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016565.	2.6	10
14	Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elementa, 2020, 8, .	3.2	45
15	Synergistic interactions among growing stressors increase risk to an Arctic ecosystem. Nature Communications, 2020, 11, 6255.	12.8	22
16	Comparison of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sensing, 2020, 12, 3313.	4.0	20
17	Ocean Color Algorithms for Estimating Chlorophyll <i>a</i> , CDOM Absorption, and Particle Backscattering in the Arctic Ocean. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015706.	2.6	36
18	Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME Journal, 2020, 14, 2395-2406.	9.8	58

#	Article	IF	CITATIONS
19	Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 2020, 369, 198-202.	12.6	244
20	Analysis of Iron Sources in Antarctic Continental Shelf Waters. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015736.	2.6	29
21	Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Progress in Oceanography, 2020, 185, 102320.	3.2	78
22	Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Scientific Reports, 2019, 9, 10087.	3.3	22
23	Characteristics and Transformation of Pacific Winter Water on the Chukchi Sea Shelf in Late Spring. Journal of Geophysical Research: Oceans, 2019, 124, 7153-7177.	2.6	25
24	Light Is the Primary Driver of Early Season Phytoplankton Production Along the Western Antarctic Peninsula. Journal of Geophysical Research: Oceans, 2019, 124, 7375-7399.	2.6	27
25	Water Mass Evolution and Circulation of the Northeastern Chukchi Sea in Summer: Implications for Nutrient Distributions. Journal of Geophysical Research: Oceans, 2019, 124, 4416-4432.	2.6	41
26	Seasonal to mesoscale variability of water masses and atmospheric conditions in Barrow Canyon, Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 162, 32-49.	1.4	40
27	Benthic fluxes of trace metals in the Chukchi Sea and their transport into the Arctic Ocean. Marine Chemistry, 2019, 208, 43-55.	2.3	45
28	Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnology and Oceanography, 2019, 64, 284-301.	3.1	54
29	Exploring the Potential Impact of Greenland Meltwater on Stratification, Photosynthetically Active Radiation, and Primary Production in the Labrador Sea. Journal of Geophysical Research: Oceans, 2018, 123, 2570-2591.	2.6	37
30	Ice algal communities in the Chukchi and Beaufort Seas in spring and early summer: Composition, distribution, and coupling with phytoplankton assemblages. Limnology and Oceanography, 2018, 63, 1109-1133.	3.1	24
31	Nitrogen Limitation of the Summer Phytoplankton and Heterotrophic Prokaryote Communities in the Chukchi Sea. Frontiers in Marine Science, 2018, 5, .	2.5	42
32	Drivers of Ice Algal Bloom Variability Between 1980 and 2015 in the Chukchi Sea. Journal of Geophysical Research: Oceans, 2018, 123, 7037-7052.	2.6	10
33	Underâ€kce Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads. Journal of Geophysical Research: Oceans, 2018, 123, 90-109.	2.6	34
34	Microalgal community structure and primary production in Arctic and Antarctic sea ice: A synthesis. Elementa, 2018, 6, .	3.2	107
35	Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. Geophysical Research Letters, 2017, 44, 5016-5024.	4.0	79
36	Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean. Limnology and Oceanography, 2017, 62, 2550-2574.	3.1	39

#	Article	IF	CITATIONS
37	Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula. Journal of Geophysical Research: Oceans, 2017, 122, 9350-9369.	2.6	45
38	Late Spring Nitrate Distributions Beneath the Iceâ€Covered Northeastern Chukchi Shelf. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2409-2417.	3.0	34
39	Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophysical Research Letters, 2017, 44, 6278-6285.	4.0	82
40	Mass balance estimates of carbon export in different water masses of the Chukchi Sea shelf. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 130, 88-99.	1.4	7
41	Decadal trends in airâ€sea CO ₂ exchange in the Ross Sea (Antarctica). Geophysical Research Letters, 2016, 43, 5271-5278.	4.0	8
42	Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Progress in Oceanography, 2016, 149, 40-81.	3.2	95
43	Spatial analysis of trends in primary production and relationship with largeâ€scale climate variability in the <scp>R</scp> oss <scp>S</scp> ea, <scp>A</scp> ntarctica (1997â€"2013). Journal of Geophysical Research: Oceans, 2016, 121, 368-386.	2.6	32
44	Iron supply and demand in an Antarctic shelf ecosystem. Geophysical Research Letters, 2015, 42, 8088-8097.	4.0	73
45	Environmental controls of marine productivity hot spots around <scp>A</scp> ntarctica. Journal of Geophysical Research: Oceans, 2015, 120, 5545-5565.	2.6	162
46	Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118, 88-104.	1.4	67
47	The seasonal cycle of the Arctic Ocean under climate change. Geophysical Research Letters, 2015, 42, 7681-7686.	4.0	29
48	Water properties, heat and volume fluxes of Pacific water in Barrow Canyon during summer 2010. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 102, 43-54.	1.4	43
49	Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Progress in Oceanography, 2015, 136, 92-114.	3.2	222
50	Characteristics of colored dissolved organic matter (CDOM) in the Western Arctic Ocean: Relationships with microbial activities. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118, 44-52.	1.4	34
51	The influence of winter water on phytoplankton blooms in the Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118, 53-72.	1.4	72
52	Continued increases in Arctic Ocean primary production. Progress in Oceanography, 2015, 136, 60-70.	3.2	506
53	Estimates of net community production in the Southern Ocean determined from time series observations (2002–2011) of nutrients, dissolved inorganic carbon, and surface ocean pCO2 in Drake Passage. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 114, 49-63.	1.4	43
54	Tight coupling of primary production and marine mammal reproduction in the Southern Ocean. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143137.	2.6	11

#	Article	IF	Citations
55	Impacts of low phytoplankton NO3â^':PO43â^' utilization ratios over the Chukchi Shelf, Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118, 105-121.	1.4	41
56	Aspects of the marine nitrogen cycle of the Chukchi Sea shelf and Canada Basin. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118, 73-87.	1.4	66
57	Fe availability drives phytoplankton photosynthesis rates during spring bloom in the Amundsen Sea Polynya, Antarctica. Elementa, 2015, 3, .	3.2	42
58	Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa, 2015, 3, .	3.2	35
59	Impacts of sea ice retreat, thinning, and melt-pond proliferation on the summer phytoplankton bloom in the Chukchi Sea, Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105, 85-104.	1.4	46
60	Sea Ice Ecosystems. Annual Review of Marine Science, 2014, 6, 439-467.	11.6	193
61	Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology, 2014, 20, 3004-3025.	9.5	448
62	Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105, 1-16.	1.4	187
63	Role of shelfbreak upwelling in the formation of a massive under-ice bloom in the Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105, 17-29.	1.4	49
64	Evidence of under-ice phytoplankton blooms in the Chukchi Sea from 1998 to 2012. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105, 105-117.	1.4	67
65	Twentieth century seaâ€ice trends in the Ross Sea from a highâ€resolution, coastal iceâ€core record. Geophysical Research Letters, 2014, 41, 3510-3516.	4.0	35
66	Annual primary production in Antarctic sea ice during 2005–2006 from a sea ice state estimate. Journal of Geophysical Research: Oceans, 2014, 119, 3645-3678.	2.6	47
67	Sea ice algal biomass and physiology in the Amundsen Sea, Antarctica. Elementa, 2014, 2, .	3.2	43
68	Productivity in the Barents Sea - Response to Recent Climate Variability. PLoS ONE, 2014, 9, e95273.	2.5	123
69	Long-term trends of upwelling and impacts on primary productivity in the Alaskan Beaufort Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 79, 106-121.	1.4	104
70	Sea ice impacts on spring bloom dynamics and net primary production in the Eastern Bering Sea. Journal of Geophysical Research: Oceans, 2013, 118, 43-62.	2.6	75
71	Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 2013, 6, 701-710.	12.9	1,627
72	Insignificant buffering capacity of Antarctic shelf carbonates. Global Biogeochemical Cycles, 2013, 27, 11-20.	4.9	6

#	Article	IF	CITATIONS
73	Light and nutrient control of photosynthesis in natural phytoplankton populations from the Chukchi and Beaufort seas, Arctic Ocean. Limnology and Oceanography, 2013, 58, 2185-2205.	3.1	43
74	The changing Arctic Ocean. Elementa, 2013, 1, .	3.2	8
75	Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. ICES Journal of Marine Science, 2012, 69, 1180-1193.	2.5	81
76	Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination. Journal of Geophysical Research, 2012, 117 , .	3.3	39
77	Patterns and controlling factors of species diversity in the Arctic Ocean. Journal of Biogeography, 2012, 39, 2081-2088.	3.0	41
78	Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms. Journal of Geophysical Research, 2012, 117, .	3.3	113
79	Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 71-76, 32-48.	1.4	113
80	Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 71-76, 5-15.	1.4	102
81	Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 71-76, 16-31.	1.4	191
82	Phytoplankton biomass and pigment responses to Fe amendments in the Pine Island and Amundsen polynyas. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 71-76, 61-76.	1.4	31
83	Key role of organic complexation of iron in sustaining phytoplankton blooms in the Pine Island and Amundsen Polynyas (Southern Ocean). Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 71-76, 49-60.	1.4	62
84	Spatial distribution of pCO2, Î"O2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 71-76, 77-93.	1.4	52
85	The Ross Sea in a Sea of Change. Oceanography, 2012, 25, 90-103.	1.0	86
86	ASPIRE: The Amundsen Sea Polynya International Research Expedition. Oceanography, 2012, 25, 40-53.	1.0	116
87	Massive Phytoplankton Blooms Under Arctic Sea Ice. Science, 2012, 336, 1408-1408.	12.6	606
88	THE EFFECT OF IRON LIMITATION ON THE PHOTOPHYSIOLOGY OF <i>PHAEOCYSTIS ANTARCTICA</i> (PRYMNESIOPHYCEAE) AND <i>FRAGILARIOPSIS CYLINDRUS</i> (BACILLARIOPHYCEAE) UNDER DYNAMIC IRRADIANCE IRRADIANCE IRRADIANCE IRRADIANCE	2.3	100
89	Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf. Journal of Geophysical Research, $2011, 116, \ldots$	3.3	105
90	Short-term photoacclimation effects on photoinhibition of phytoplankton in the Drake Passage (Southern Ocean). Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 943-955.	1.4	29

#	Article	IF	Citations
91	Primary productivity in the Arctic Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima on largeâ€scale estimates. Journal of Geophysical Research, 2011, 116, .	3.3	106
92	Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research, 2011, 116, .	3.3	339
93	A reassessment of primary production and environmental change in the Bering Sea. Journal of Geophysical Research, $2011,116,.$	3.3	73
94	Spatial and temporal variation of photosynthetic parameters in natural phytoplankton assemblages in the Beaufort Sea, Canadian Arctic. Polar Biology, 2011, 34, 1915-1928.	1.2	41
95	STRATEGIES AND RATES OF PHOTOACCLIMATION IN TWO MAJOR SOUTHERN OCEAN PHYTOPLANKTON TAXA: <i>PHAEOCYSTIS ANTARCTICA</i> (HAPTOPHYTA) AND <i>FRAGILARIOPSIS CYLINDRUS</i> (BACILLARIOPHYCEAE) sup>1. Journal of Phycology, 2010, 46, 1138-1151.	2.3	57
96	PHOTOPHYSIOLOGY IN TWO SOUTHERN OCEAN PHYTOPLANKTON TAXA: PHOTOSYNTHESIS OF <i>PHAEOCYSTIS ANTARCTICA</i> (PRYMNESIOPHYCEAE) AND <i>FRAGILARIOPSIS CYLINDRUS</i> (BACILLARIOPHYCEAE) UNDER SIMULATED MIXEDâ€LAYER IRRADIANCE 2010, 46, 1114-1127.	2.3	64
97	Responding to climate change: Adélie Penguins confront astronomical and ocean boundaries. Ecology, 2010, 91, 2056-2069.	3.2	76
98	Photophysiology in Two Major Southern Ocean Phytoplankton Taxa: Photosynthesis and Growth of Phaeocystis antarctica and Fragilariopsis cylindrus under Different Irradiance Levels. Integrative and Comparative Biology, 2010, 50, 950-966.	2.0	136
99	Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean?. Limnology and Oceanography, 2010, 55, 1248-1264.	3.1	74
100	Airâ€sea flux of CO ₂ in the Arctic Ocean, 1998–2003. Journal of Geophysical Research, 2010, 115, .	3.3	51
101	Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons. Continental Shelf Research, 2010, 30, 733-742.	1.8	21
102	Influence of light and temperature on the marine iron cycle: From theoretical to global modeling. Global Biogeochemical Cycles, 2009, 23, .	4.9	40
103	Sea ice variability and primary productivity in the Ross Sea, Antarctica, from methylsulphonate snow record. Geophysical Research Letters, 2009, 36, .	4.0	43
104	Contribution of underâ€ice primary production to an iceâ€edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophysical Research Letters, 2009, 36, .	4.0	209
105	Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment. Limnology and Oceanography, 2009, 54, 952-969.	3.1	27
106	Primary production in the Arctic Ocean, 1998–2006. Journal of Geophysical Research, 2008, 113, .	3.3	308
107	UNDERSTANDING NITROGEN LIMITATION IN <i>AUREOCOCCUS ANOPHAGEFFERENS</i> (PELAGOPHYCEAE) THROUGH cDNA AND qRTâ€PCR ANALYSIS (sup>1) Journal of Phycology, 2008, 44, 1235-1249.	2.3	56
108	Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research, 2008, 113, .	3.3	521

#	Article	IF	Citations
109	Coastal Southern Ocean: A strong anthropogenic CO ₂ sink. Geophysical Research Letters, 2008, 35, .	4.0	211
110	Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters, 2008, 35, .	4.0	763
111	Interannual variation in air-sea CO2flux in the Ross Sea, Antarctica: A model analysis. Journal of Geophysical Research, 2007, 112, .	3.3	41
112	The role of thermal and mechanical processes in the formation of the Ross Sea summer polynya. Journal of Geophysical Research, 2007, 112, .	3.3	17
113	Marine manipulations. Nature, 2007, 450, 491-492.	27.8	81
114	Satellite estimation of marine particulate organic carbon in waters dominated by different phytoplankton taxa. Journal of Geophysical Research, 2006, 111, .	3.3	31
115	Processes governing the supply of iron to phytoplankton in stratified seas. Journal of Geophysical Research, 2006, 111 , .	3.3	49
116	Constraints on the extent of the Ross Sea phytoplankton bloom. Journal of Geophysical Research, 2006, 111, .	3.3	25
117	A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 741-770.	1.4	574
118	EXAMINATION OF DIEL CHANGES IN GLOBAL TRANSCRIPT ACCUMULATION IN SYNECHOCYSTIS (CYANOBACTERIA)1. Journal of Phycology, 2006, 42, 622-636.	2.3	18
119	Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature, 2005, 434, 211-214.	27.8	438
120	Marine microorganisms and global nutrient cycles. Nature, 2005, 437, 349-355.	27.8	1,124
121	Iron in the Ross Sea: 2. Impact of discrete iron addition strategies. Journal of Geophysical Research, 2005, 110, .	3.3	15
122	Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry. Journal of Geophysical Research, 2005, 110, .	3.3	59
123	Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean, 1950s to the 1990s. Antarctic Science, 2005, 17, 171-182.	0.9	125
124	Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. Geophysical Research Letters, 2004, 31, .	4.0	124
125	Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	5
126	Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 117-138.	1.4	172

#	Article	IF	Citations
127	Large scale importance of sea ice biology in the Southern Ocean. Antarctic Science, 2004, 16, 471-486.	0.9	223
128	Physical control of chlorophylla, POC, and TPN distributions in the pack ice of the Ross Sea, Antarctica. Journal of Geophysical Research, 2003, 108, .	3.3	62
129	A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 2003, 18, n/a-n/a.	3.0	90
130	Impact of iceberg C-19 on Ross Sea primary production. Geophysical Research Letters, 2003, 30, .	4.0	64
131	A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production. Journal of Geophysical Research, 2003, 108, .	3.3	111
132	Impact of a deep ozone hole on Southern Ocean primary production. Journal of Geophysical Research, 2003, 108, .	3.3	28
133	Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research, 2003, 108, .	3.3	389
134	Anomalously low zooplankton abundance in the Ross Sea: An alternative explanation. Limnology and Oceanography, 2003, 48, 686-699.	3.1	50
135	The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: Evidence from SeaWiFS and MODIS. Limnology and Oceanography, 2003, 48, 2355-2368.	3.1	96
136	Taxon-specific differences in C/P and N/P drawdown for phytoplankton in the Ross Sea, Antarctica. Geophysical Research Letters, 2002, 29, 44-1-44-4.	4.0	46
137	Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochemical Cycles, 2002, 16, 9-1-9-15.	4.9	232
138	Ecological impact of a large Antarctic iceberg. Geophysical Research Letters, 2002, 29, 8-1.	4.0	125
139	Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature, 2000, 404, 595-598.	27.8	292
140	The Sulfur-Isotopic Composition of Cenozoic Seawater Sulfate: Implications for Pyrite Burial and Atmospheric Oxygen. International Geology Review, 2000, 42, 491-498.	2.1	5
141	Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. Journal of Geophysical Research, 2000, 105, 8827-8846.	3.3	183
142	Phytoplankton Community Structure and the Drawdown of Nutrients and CO2 in the Southern Ocean. Science, 1999, 283, 365-367.	12.6	719
143	PHOTOPHYSIOLOGICAL EVIDENCE OF NUTRIENT LIMITATION OF PLATELET ICE ALGAE IN MCMURDO SOUND, ANTARCTICA. Journal of Phycology, 1998, 34, 788-797.	2.3	35
144	Physical forcing of phytoplankton dynamics in the southwestern Ross Sea. Journal of Geophysical Research, 1998, 103, 1007-1021.	3.3	152

#	Article	IF	CITATIONS
145	Primary production in Southern Ocean waters. Journal of Geophysical Research, 1998, 103, 15587-15600.	3.3	352
146	Bio-optical properties of the southwestern Ross Sea. Journal of Geophysical Research, 1998, 103, 21683-21695.	3.3	74
147	Primary Production in Antarctic Sea Ice. Science, 1997, 276, 394-397.	12.6	219
148	Observations and simulations of physical and biological processes at ocean weather station P, 1951-1980. Journal of Geophysical Research, 1996, 101, 3697-3713.	3.3	65
149	MICROALGAL LIGHT-HARVESTING IN EXTREME LOW-LIGHT ENVIRONMENTS IN MCMURDO SOUND, ANTARCTICA1. Journal of Phycology, 1995, 31, 508-520.	2.3	53
150	Spring Phytoplankton Production in the Western Ross Sea. Science, 1994, 266, 261-263.	12.6	147
151	A high resolution bio-optical model of microalgal growth: Tests using sea-ice algal community time-series data. Limnology and Oceanography, 1994, 39, 609-631.	3.1	67
152	Distributions of Phytoplankton Blooms in the Southern Ocean. Science, 1993, 262, 1832-1837.	12.6	327
153	A simulated Antarctic ast ice ecosystem. Journal of Geophysical Research, 1993, 98, 6929-6946.	3.3	92
154	THE INFLUENCE OF SALINITY AND TEMPERATURE COVARIATION ON THE PHOTOPHYSIOLOGICAL CHARACTERISTICS OF ANTARCTIC SEA ICE MICROALGAE1. Journal of Phycology, 1992, 28, 746-756.	2.3	114
155	A bioâ€optical model of Antarctic sea ice. Journal of Geophysical Research, 1991, 96, 10581-10592.	3.3	85