Shelly R Peyton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5919960/publications.pdf

Version: 2024-02-01

185998 174990 3,719 57 28 52 citations h-index g-index papers 71 71 71 5542 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. Journal of Cellular Physiology, 2005, 204, 198-209.	2.0	580
2	The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials, 2006, 27, 4881-4893.	5.7	318
3	Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology - Cell Physiology, 2006, 290, C1640-C1650.	2.1	219
4	The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials, 2008, 29, 2597-2607.	5.7	195
5	ECM Compliance Regulates Osteogenesis by Influencing MAPK Signaling Downstream of RhoA and ROCK. Journal of Bone and Mineral Research, 2009, 24, 886-898.	3.1	189
6	The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochemistry and Biophysics, 2007, 47, 300-320.	0.9	169
7	Mechanics of intact bone marrow. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 299-307.	1.5	149
8	The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. Journal of Cellular Physiology, 2007, 211, 661-672.	2.0	115
9	Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials, 2014, 35, 5749-5759.	5.7	113
10	Fewer Bacteria Adhere to Softer Hydrogels. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19562-19569.	4.0	104
10	Fewer Bacteria Adhere to Softer Hydrogels. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19562-19569. Marrowâ€Derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnology and Bioengineering, 2011, 108, 1181-1193.	4.0	104
	Marrowâ€Derived stem cell motility in 3D synthetic scaffold is governed by geometry along with		
11	Marrowâ€Derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnology and Bioengineering, 2011, 108, 1181-1193. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca ²⁺ –NFAT	1.7	101
11 12	Marrowâ€Derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnology and Bioengineering, 2011, 108, 1181-1193. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca ²⁺ –NFAT signaling. Genes and Development, 2018, 32, 497-511. Tumor cell–organized fibronectin maintenance of a dormant breast cancer population. Science	2.7	101 97
11 12 13	Marrowâ€Derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnology and Bioengineering, 2011, 108, 1181-1193. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca ²⁺ –NFAT signaling. Genes and Development, 2018, 32, 497-511. Tumor cell–organized fibronectin maintenance of a dormant breast cancer population. Science Advances, 2020, 6, eaaz4157. Cavitation in soft matter. Proceedings of the National Academy of Sciences of the United States of	1.7 2.7 4.7	101 97 92
11 12 13	Marrowâ€Derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnology and Bioengineering, 2011, 108, 1181-1193. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca ²⁺ –NFAT signaling. Genes and Development, 2018, 32, 497-511. Tumor cell–organized fibronectin maintenance of a dormant breast cancer population. Science Advances, 2020, 6, eaaz4157. Cavitation in soft matter. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9157-9165.	1.7 2.7 4.7 3.3	101 97 92 86
11 12 13 14	Marrowâ€Derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnology and Bioengineering, 2011, 108, 1181-1193. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca⟨sup⟩2+⟨/sup⟩–NFAT signaling. Genes and Development, 2018, 32, 497-511. Tumor cell–organized fibronectin maintenance of a dormant breast cancer population. Science Advances, 2020, 6, eaaz4157. Cavitation in soft matter. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9157-9165. Cross-platform mechanical characterization of lung tissue. PLoS ONE, 2018, 13, e0204765. Control of thiol-maleimide reaction kinetics in PEG hydrogel networks. Acta Biomaterialia, 2018, 70,	1.7 2.7 4.7 3.3	101 97 92 86 85

#	Article	IF	CITATIONS
19	A cell–ECM screening method to predict breast cancer metastasis. Integrative Biology (United) Tj ETQq1 1 0.78	4314 rgBT	Qverlock
20	Thermal-Responsive Behavior of a Cell Compatible Chitosan/Pectin Hydrogel. Biomacromolecules, 2015, 16, 1837-1843.	2.6	62
21	Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nature Biomedical Engineering, 2018, 2, 915-929.	11.6	57
22	PEG-Phosphorylcholine Hydrogels As Tunable and Versatile Platforms for Mechanobiology. Biomacromolecules, 2013, 14, 2294-2304.	2.6	54
23	Control of Astrocyte Quiescence and Activation in a Synthetic Brain Hydrogel. Advanced Healthcare Materials, 2020, 9, e1901419.	3.9	51
24	Applicability of drug response metrics for cancer studies using biomaterials. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180226.	1.8	41
25	An omentum-inspired 3D PEG hydrogel for identifying ECM-drivers of drug resistant ovarian cancer. APL Bioengineering, 2019, 3, 026106.	3.3	39
26	A biomaterial screening approach reveals microenvironmental mechanisms of drug resistance. Integrative Biology (United Kingdom), 2017, 9, 912-924.	0.6	38
27	Bio-inspired materials for parsing matrix physicochemical control of cell migration: A Review. Integrative Biology (United Kingdom), 2012, 4, 37-52.	0.6	37
28	Autocrine-Controlled Formation and Function of Tissue-Like Aggregates by Primary Hepatocytes in Micropatterned Hydrogel Arrays. Tissue Engineering - Part A, 2011, 17, 1055-1068.	1.6	35
29	Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 3125.	2.2	34
30	A novel three-dimensional model to quantify metastatic melanoma invasion. Molecular Cancer Therapeutics, 2007, 6, 552-561.	1.9	25
31	Tumorâ€stroma interactions differentially alter drug sensitivity based on the origin of stromal cells. Molecular Systems Biology, 2018, 14, e8322.	3.2	25
32	The influence of ascorbic acid, TGF-β1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG–fibrinogen constructs. Biomaterials, 2009, 30, 3854-3864.	5.7	23
33	2D or 3D? How cell motility measurements are conserved across dimensions in vitro and translate in vivo. Bioengineering and Translational Medicine, 2020, 5, e10148.	3.9	23
34	Integrin $\hat{l}_{\pm}6$ and EGFR signaling converge at mechanosensitive calpain 2. Biomaterials, 2018, 178, 73-82.	5.7	21
35	Strain-stiffening gels based on latent crosslinking. Soft Matter, 2017, 13, 9007-9014.	1.2	20
36	Vascularized Biomaterials to Study Cancer Metastasis. Advanced Healthcare Materials, 2020, 9, e1901459.	3.9	20

#	Article	IF	CITATIONS
37	Differential cathepsin responses to inhibitor-induced feedback: E-64 and cystatin C elevate active cathepsin S and suppress active cathepsin L in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2016, 79, 199-208.	1.2	19
38	Anomalously diffusing and persistently migrating cells in 2D and 3D culture environments. APL Bioengineering, 2018, 2, 026112.	3.3	18
39	A poly(ethylene glycol) three-dimensional bone marrow hydrogel. Biomaterials, 2022, 280, 121270.	5.7	18
40	Biochemical and biomechanical drivers of cancer cell metastasis, drug response and nanomedicine. Drug Discovery Today, 2016, 21, 1489-1494.	3.2	17
41	Complementary, Semiautomated Methods for Creating Multidimensional PEG-Based Biomaterials. ACS Biomaterials Science and Engineering, 2018, 4, 707-718.	2.6	16
42	Promoting cell adhesion on slippery phosphorylcholine hydrogel surfaces. Journal of Materials Chemistry B, 2014, 2, 620-624.	2.9	14
43	Biomechanical Microenvironment Regulates Fusogenicity of Breast Cancer Cells. ACS Biomaterials Science and Engineering, 2019, 5, 3817-3827.	2.6	13
44	Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials. Soft Matter, 2020, 16, 9006-9013.	1.2	13
45	Localized characterization of brain tissue mechanical properties by needle induced cavitation rheology and volume controlled cavity expansion. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104168.	1.5	12
46	Heparin Decamer Bridges a Growth Factor and an Oligolysine by Different Charge-Driven Interactions. Biomacromolecules, 2013, 14, 4091-4098.	2.6	9
47	Smooth Muscle Stiffness Sensitivity is Driven by Soluble and Insoluble ECM Chemistry. Cellular and Molecular Bioengineering, 2015, 8, 333-348.	1.0	9
48	Emerging Concepts and Tools in Cell Mechanomemory. Annals of Biomedical Engineering, 2020, 48, 2103-2112.	1.3	9
49	OrgDyn: feature- and model-based characterization of spatial and temporal organoid dynamics. Bioinformatics, 2020, 36, 3292-3294.	1.8	6
50	Biomaterials in Mechano-oncology: Means to Tune Materials to Study Cancer. Advances in Experimental Medicine and Biology, 2018, 1092, 253-287.	0.8	5
51	Extracellular matrix stiffness protects carcinoma cells from sorafenib via JNK signaling. , 2014, , .		3
52	Genetic Mutations Associated with Hormone-Positive Breast Cancer in a Small Cohort of Ethiopian Women. Annals of Biomedical Engineering, 2021, 49, 1900-1908.	1.3	2
53	Cavitation induced fracture of intact brain tissue. Biophysical Journal, 2022, 121, 2721-2729.	0.2	1
54	Integrin binding uniquely regulates tropic breast cancer cell phenotypes in vitro. , 2014, , .		0

SHELLY R PEYTON

#	Article	IF	CITATIONS
55	The 2020 Young Innovators of Cellular and Molecular Bioengineering. Cellular and Molecular Bioengineering, 2020, 13, 391-392.	1.0	O
56	Materials-Driven Approaches to Understand Extrinsic Drug Resistance in Cancer. Soft Matter, 2022, , .	1.2	0
57	Systems approaches to uncovering the contribution of environment-mediated drug resistance. Current Opinion in Solid State and Materials Science, 2022, 26, 101005.	5.6	O