Ki Hoon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5919709/publications.pdf Version: 2024-02-01

KI HOON LEE

#	Article	IF	CITATIONS
1	Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 2005, 46, 5094-5102.	1.8	528
2	Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Acta Biomaterialia, 2016, 39, 146-155.	4.1	197
3	Electrospun threeâ€dimensional silk fibroin nanofibrous scaffold. Journal of Applied Polymer Science, 2007, 106, 3922-3928.	1.3	119
4	Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions. International Journal of Biological Macromolecules, 2012, 51, 336-341.	3.6	97
5	Surface-modified spherical lignin particles with superior Cr(VI) removal efficiency. Chemosphere, 2020, 239, 124733.	4.2	91
6	Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme. Fibers and Polymers, 2005, 6, 181-185.	1.1	89
7	The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. International Journal of Biological Macromolecules, 2007, 41, 346-353.	3.6	73
8	Effect of degumming methods on structural characteristics and properties of regenerated silk. International Journal of Biological Macromolecules, 2017, 104, 294-302.	3.6	69
9	Refining hot-water extracted silk sericin by ethanol-induced precipitation. International Journal of Biological Macromolecules, 2011, 48, 32-37.	3.6	67
10	Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution. International Journal of Biological Macromolecules, 2013, 55, 161-168.	3.6	67
11	Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments. International Journal of Biological Macromolecules, 2007, 41, 168-172.	3.6	65
12	Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. International Journal of Biological Macromolecules, 2015, 79, 943-951.	3.6	65
13	Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution. Chemosphere, 2018, 207, 507-516.	4.2	61
14	Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal. Algal Research, 2015, 7, 92-99.	2.4	60
15	Preparation of Silk Sericin/Lignin Blend Beads for the Removal of Hexavalent Chromium Ions. International Journal of Molecular Sciences, 2016, 17, 1466.	1.8	59
16	Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. International Journal of Biological Macromolecules, 2017, 102, 1092-1103.	3.6	58
17	Fish gelatin nanofibers prevent drug crystallization and enable ultrafast delivery. RSC Advances, 2017, 7, 40411-40417.	1.7	54
18	Sericin Promotes Fibroin Silk I Stabilization Across a Phase-Separation. Biomacromolecules, 2017, 18, 2343-2349.	2.6	52

KI HOON LEE

#	Article	IF	CITATIONS
19	Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromolecular Research, 2004, 12, 534-539.	1.0	51
20	Novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of silk sericin. Journal of Applied Polymer Science, 2001, 80, 274-280.	1.3	46
21	Silk Sericin Retards the Crystallization of Silk Fibroin. Macromolecular Rapid Communications, 2004, 25, 1792-1796.	2.0	44
22	Crosslinking reaction of phenolic side chains in silk fibroin by tyrosinase. Fibers and Polymers, 2004, 5, 234-238.	1.1	43
23	Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation. International Journal of Biological Macromolecules, 2013, 52, 59-65.	3.6	42
24	Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system. Journal of Applied Polymer Science, 2007, 105, 1605-1610.	1.3	40
25	The role of glycerol and water in flexible silk sericin film. International Journal of Biological Macromolecules, 2016, 82, 945-951.	3.6	39
26	Preparation of silk sericin beads using LiCl/DMSO solvent and their potential as a drug carrier for oral administration. Fibers and Polymers, 2007, 8, 470-476.	1.1	37
27	Multifunctional Adhesive Silk Fibroin with Blending of RGD-Bioconjugated Mussel Adhesive Protein. Biomacromolecules, 2014, 15, 1390-1398.	2.6	37
28	Effect of shear viscosity on the preparation of sphere-like silk fibroin microparticles by electrospraying. International Journal of Biological Macromolecules, 2015, 79, 988-995.	3.6	34
29	Preparation and characterization of silk sericin/glycerol/graphene oxide nanocomposite film. Fibers and Polymers, 2013, 14, 2111-2116.	1.1	31
30	Fabrication of Phaeodactylum tricornutum extract-loaded gelatin nanofibrous mats exhibiting antimicrobial activity. International Journal of Biological Macromolecules, 2014, 63, 198-204.	3.6	29
31	Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae spirulina extract. Biopolymers, 2014, 101, 307-318.	1.2	28
32	Green fabrication of antibacterial gelatin fiber for biomedical application. Reactive and Functional Polymers, 2019, 136, 86-94.	2.0	28
33	Preparation of sericin microparticles by electrohydrodynamic spraying and their application in drug delivery. Macromolecular Research, 2011, 19, 266-272.	1.0	25
34	Highly porous three-dimensional poly(lactide-co-glycolide) (PLGA) microfibrous scaffold prepared by electrospinning method: A comparison study with other PLGA type scaffolds on its biological evaluation. Fibers and Polymers, 2012, 13, 685-691.	1,1	25
35	Silk sericin microparticles as a biosorbent for hexavalent chromium ion. Macromolecular Research, 2014, 22, 788-795.	1.0	21
36	Miscibility, structural characteristics, and thermal behavior of wet spun regenerated silk fibroin/nylon 6 blend filaments. Fibers and Polymers, 2010, 11, 14-20.	1.1	20

Ki Hoon Lee

#	Article	IF	CITATIONS
37	Sericin-fixed filk fiber as an immobilization support of enzyme. Fibers and Polymers, 2005, 6, 1-5.	1.1	19
38	Water-resistant Lignin/Poly(vinyl alcohol) Blend Fibers for Removal of Hexavalent Chromium. Fibers and Polymers, 2018, 19, 1175-1183.	1.1	18
39	Osteoblastic cells culture on electrospun poly(ε-caprolacton) scaffolds incorporating amphiphilic PEG–POSS telechelic. Journal of Materials Science: Materials in Medicine, 2013, 24, 2029-2036.	1.7	15
40	Preparation and characterization of electrospun poly(Îμ-caprolactone)-poly(l-lactic acid) nanofiber tubes. Journal of Materials Science, 2013, 48, 3659-3664.	1.7	13
41	Surface modification of silk fibroin nanofibrous mat with dextran for wound dressing. Fibers and Polymers, 2014, 15, 1137-1145.	1.1	13
42	Synthesis of gold nanoparticles using silk sericin as a green reducing and capping agent. European Polymer Journal, 2022, 164, 110960.	2.6	13
43	Wound-Healing Potential of Cultured Epidermal Sheets Is Unaltered after Lyophilization: A Preclinical Study in Comparison to Cryopreserved CES. BioMed Research International, 2013, 2013, 1-6.	0.9	12
44	Methyl cellulose nanofibrous mat for lipase immobilization via cross-linked enzyme aggregates. Macromolecular Research, 2016, 24, 218-225.	1.0	12
45	3D Silk Fiber Construct Embedded Dual-Layer PEG Hydrogel for Articular Cartilage Repair – In vitro Assessment. Frontiers in Bioengineering and Biotechnology, 2021, 9, 653509.	2.0	12
46	Recovery of Silk Sericin from Soap-Alkaline Degumming Solution. International Journal of Industrial Entomology, 2013, 27, 203-208.	0.1	11
47	Effects of Organic Solvent and Solution Temperature on Electrospun Polyvinylidene Fluoride Nanofibers. Journal of Nanoscience and Nanotechnology, 2013, 13, 2708-2713.	0.9	10
48	Chromium(VI) Adsorption Behavior of Silk Sericin Beads. International Journal of Industrial Entomology, 2013, 26, 47-53.	0.1	9
49	Preparation of phytoncide-emitting nylon/PP sheath/core fiber and the release profile of phytoncide. Fibers and Polymers, 2012, 13, 1209-1213.	1.1	8
50	Preparation and characterization of low molecular weight silk fibroin by high-temperature and high-pressure method. Journal of Applied Polymer Science, 2002, 85, 2890-2895.	1.3	6
51	Monitoring of phase separation between silk fibroin and sericin using various dye system. International Journal of Industrial Entomology, 2015, 30, 1-5.	0.1	3
52	Introducing Deodorant Property on Chitosan Nonwoven Fabric by Sericin Post-Treatment. Textile Science and Engineering, 2016, 53, 273-278.	0.4	2
53	Operation Modes Can Affect the Activity of Immobilized Enzyme onto Silk Fibroin Nanofibrous Membrane. International Journal of Industrial Entomology, 2013, 27, 322-325.	0.1	2
54	Activity and Stability of Immobilized Enzyme on Silk Sericin Bead. International Journal of Industrial Entomology, 2013, 27, 329-332.	0.1	2

KI HOON LEE

#	Article	IF	CITATIONS
55	Heavy Metal Adsorption with PVA/Lignin Blend Fibers. Textile Science and Engineering, 2016, 53, 391-396.	0.4	1
56	Effect of Salts on Gelation Time of Silk Sericin Solution. International Journal of Industrial Entomology, 2013, 27, 326-328.	0.1	1
57	Strategies of Caffeine Loading into Silk Fibroin Film for Weight Loss Patch. International Journal of Industrial Entomology, 2013, 27, 312-316.	0.1	1
58	Fabrication of Porous Silk Fibroin Microparticles by Electrohydrodynamic Spraying. Porrime, 2014, 38, 98-102.	0.0	1
59	Silk materials for biotechnology. , 2019, , 239-262.		0