MÃ;rio Sérgio Palma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5919474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides, 2004, 25, 919-928.	2.4	253
2	Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) Î ³ Activators and Pan-PPAR Partial Agonists. PLoS ONE, 2012, 7, e36297.	2.5	165
3	Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides, 2005, 26, 2157-2164.	2.4	136
4	Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (L.). Insect Biochemistry and Molecular Biology, 2005, 35, 85-91.	2.7	115
5	PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties. Biophysical Journal, 2015, 109, 936-947.	0.5	102
6	Structural and biological characterization of two novel peptides from the venom of the neotropical social wasp Agelaia pallipes pallipes. Toxicon, 2004, 44, 67-74.	1.6	90
7	Myotoxic phospholipases A2 isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: Cytotoxic effect on microorganism and tumor cells. Peptides, 2008, 29, 1645-1656.	2.4	89
8	Mode of Peroxisome Proliferator-Activated Receptor Î ³ Activation by Luteolin. Molecular Pharmacology, 2012, 81, 788-799.	2.3	84
9	Proteomic View of the Venom from the Fire Ant <i>Solenopsis invicta</i> Buren. Journal of Proteome Research, 2012, 11, 4643-4653.	3.7	79
10	Profiling the Proteome of the Venom from the Social Wasp <i>Polybia paulista</i> : A Clue to Understand the Envenoming Mechanism. Journal of Proteome Research, 2010, 9, 3867-3877.	3.7	68
11	Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista. Peptides, 2009, 30, 1387-1395.	2.4	66
12	Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). Toxicon, 2005, 45, 101-106.	1.6	63
13	Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). Ecotoxicology, 2018, 27, 109-121.	2.4	60
14	Crystal structure of human purine nucleoside phosphorylase complexed with acyclovir. Biochemical and Biophysical Research Communications, 2003, 308, 553-559.	2.1	58
15	New Insight into the Mechanism of Action of Wasp Mastoparan Peptides: Lytic Activity and Clustering Observed with Giant Vesicles. Langmuir, 2011, 27, 10805-10813.	3.5	56
16	The effects of the C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2357-2368.	2.6	56
17	Structures of human purine nucleoside phosphorylase complexed with inosine and ddl. Biochemical and Biophysical Research Communications, 2004, 313, 907-914.	2.1	55
18	Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon, 2018, 148, 172-196.	1.6	55

MÃirio Sérgio Palma

#	Article	IF	CITATIONS
19	Crystal structure of human purine nucleoside phosphorylase at 2.3Ã resolution. Biochemical and Biophysical Research Communications, 2003, 308, 545-552.	2.1	54
20	Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. European Biophysics Journal, 2008, 37, 879-891.	2.2	54
21	Structural bioinformatics study of EPSP synthase from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2003, 312, 608-614.	2.1	51
22	Molecular model of shikimate kinase from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2002, 295, 142-148.	2.1	50
23	Chorismate Synthase: An Attractive Target For Drug Development Against Orphan Diseases. Current Drug Targets, 2007, 8, 437-444.	2.1	49
24	Purification, sequencing and structural characterization of the phospholipase A1 from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae). Toxicon, 2007, 50, 923-937.	1.6	49
25	Structure of shikimate kinase fromMycobacterium tuberculosisreveals the binding of shikimic acid. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2310-2319.	2.5	48
26	The Inhibition of 5-enolpyruvylshikimate-3-phosphate Synthase as a Model for Development of Novel Antimicrobials. Current Drug Targets, 2007, 8, 445-457.	2.1	48
27	Structural basis for inhibition of human PNP by immucillin-H. Biochemical and Biophysical Research Communications, 2003, 309, 917-922.	2.1	47
28	The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids, 2011, 40, 91-100.	2.7	47
29	MALDI Imaging Analysis of Neuropeptides in the Africanized Honeybee (<i>Apis mellifera</i>) Brain: Effect of Ontogeny. Journal of Proteome Research, 2014, 13, 3054-3064.	3.7	46
30	Identification of bradykinins in solitary wasp venoms. Toxicon, 2002, 40, 309-312.	1.6	45
31	Proteomic analysis of kidney in rats chronically exposed to fluoride. Chemico-Biological Interactions, 2009, 180, 305-311.	4.0	45
32	New catalytic mechanism for human purine nucleoside phosphorylase. Biochemical and Biophysical Research Communications, 2005, 327, 646-649.	2.1	44
33	Mass spectrometric characterization of two novel inflammatory peptides from the venom of the social waspPolybia paulista. Rapid Communications in Mass Spectrometry, 2004, 18, 1095-1102.	1.5	43
34	Analysis of Agonist and Antagonist Effects on Thyroid Hormone Receptor Conformation by Hydrogen/Deuterium Exchange. Molecular Endocrinology, 2011, 25, 15-31.	3.7	41
35	Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders. Journal of Proteomics, 2014, 105, 174-185.	2.4	40
36	Crystal structure of human PNP complexed with guanine. Biochemical and Biophysical Research Communications, 2003, 312, 767-772.	2.1	39

#	Article	IF	CITATIONS
37	Influence of the Bilayer Composition on the Binding and Membrane Disrupting Effect of Polybia-MP1, an Antimicrobial Mastoparan Peptide with Leukemic T-Lymphocyte Cell Selectivity. Biochemistry, 2012, 51, 4898-4908.	2.5	39
38	Polybitoxins: a group of phospholipases A2 from the venom of the neotropical social wasp paulistinha (Polybia paulista). Toxicon, 1998, 36, 189-199.	1.6	38
39	Brown Recluse Spider Venom: Proteomic Analysis and Proposal of a Putative Mechanism of Action. Protein and Peptide Letters, 2009, 16, 933-943.	0.9	38
40	Effects of Sublethal Dose of Fipronil on Neuron Metabolic Activity of Africanized Honeybees. Archives of Environmental Contamination and Toxicology, 2013, 64, 456-466.	4.1	38
41	Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy. Insect Biochemistry and Molecular Biology, 2019, 105, 10-24.	2.7	37
42	Cloning, overexpression, and purification of functional human purine nucleoside phosphorylase. Protein Expression and Purification, 2003, 27, 158-164.	1.3	36
43	Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications. Journal of Proteomics, 2017, 161, 88-103.	2.4	36
44	Investigating the effect of different positioning of lysine residues along the peptide chain of mastoparans for their secondary structures and biological activities. Amino Acids, 2011, 40, 77-90.	2.7	34
45	Hyaluronidase from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, structural modeling, purification, and immunological analysis. Toxicon, 2013, 64, 70-80.	1.6	34
46	Agelotoxin: a phospholipase A2 from the venom of the neotropical social wasp cassununga (Agelaia) Tj ETQq0 0 C) rgBT /Ov 1:6	verlock 10 Tf
47	Structure of human PNP complexed with ligands. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 856-862.	2.5	33
48	Crystal structure of human PNP complexed with hypoxanthine and sulfate ion. Biochemical and Biophysical Research Communications, 2005, 326, 335-338.	2.1	33
49	Isolation and sequence determination of peptides in the venom of the spider wasp (Cyphononyx) Tj ETQq1 1 0.78 spectrometry. Toxicon, 2001, 39, 1257-1260.	34314 rgB 1.6	T /Overlock 32
50	Using Proteomic Strategies for Sequencing and Post-Translational Modifications Assignment of Antigen-5, a Major Allergen from the Venom of the Social Wasp Polybia paulista. Journal of Proteome Research, 2014, 13, 855-865.	3.7	32
51	Two new bradykinin-related peptides from the venom of the social wasp Protopolybia exigua (Saussure). Peptides, 2006, 27, 2632-2639.	2.4	31
52	Interactions of mast cell degranulating peptides with model membranes: A comparative biophysical study. Archives of Biochemistry and Biophysics, 2009, 486, 1-11.	3.0	31
53	Proteomic characterization of the multiple forms of the PLAs from the venom of the social wasp <i>Polybia paulista</i> . Proteomics, 2011, 11, 1403-1412.	2.2	31

Peptidome profiling of venom from the social wasp Polybia paulista. Toxicon, 2015, 107, 290-303. 1.6 31

MÃirio Sérgio Palma

#	Article	IF	CITATIONS
55	2-Nitro- and 2,4-Dinitrobenzenesulfonamides as Protecting Groups for Primary Amines. Synlett, 2001, 2001, 1167-1169.	1.8	30
56	Molecular models for shikimate pathway enzymes of Xylella fastidiosa. Biochemical and Biophysical Research Communications, 2004, 320, 979-991.	2.1	30
57	Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a subâ€lethal doses of the insecticide fipronil. Ecotoxicology, 2014, 23, 1659-1670.	2.4	30
58	Structural bioinformatics study of PNP from Schistosoma mansoni. Biochemical and Biophysical Research Communications, 2004, 322, 100-104.	2.1	29
59	Myotoxic effects of mastoparan from Polybia paulista (Hymenoptera, Epiponini) wasp venom in mice skeletal muscle. Toxicon, 2007, 50, 589-599.	1.6	29
60	Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics, 2013, 13, 2638-2648.	2.2	29
61	A simple, rapid method for the extraction of whole fire ant venom (Insecta: Formicidae: Solenopsis). Toxicon, 2013, 65, 5-8.	1.6	29
62	Structure Determination of a Tetrahydro-?-carboline of Arthropod Origin: A Novel Alkaloid-Toxin Subclass from the Web of SpiderNephila clavipes. Chemistry and Biodiversity, 2005, 2, 525-534.	2.1	28
63	Hyperalgesic and edematogenic effects of peptides isolated from the venoms of honeybee (Apis) Tj ETQq1 1 0.78 2011, 40, 101-111.	34314 rgB 2.7	T /Overlock 28
64	Combining Experimental Evidence and Molecular Dynamic Simulations To Understand the Mechanism of Action of the Antimicrobial Octapeptide Jelleine-I. Biochemistry, 2014, 53, 4857-4868.	2.5	28
65	Spider silk proteome provides insight into the structural characterization of Nephila clavipes flagelliform spidroin. Scientific Reports, 2018, 8, 14674.	3.3	28
66	Protonectin (1–6): A novel chemotactic peptide from the venom of the social wasp Agelaia pallipes pallipes. Toxicon, 2010, 56, 880-889.	1.6	27
67	Structural Model for the Spider Silk Protein Spidroin-1. Journal of Proteome Research, 2015, 14, 3859-3870.	3.7	26
68	Composition of freshly harvested Brazilian royal jelly: identification of carbohydrates from the sugar fraction. Journal of Apicultural Research, 1992, 31, 42-44.	1.5	25
69	Crystallographic structure of PNP from Mycobacterium tuberculosis at 1.9Ã resolution. Biochemical and Biophysical Research Communications, 2004, 324, 789-794.	2.1	25
70	Changes in Amounts of Total Salivary Gland Proteins of <i>Lutzomyia longipalpis</i> (Diptera:) Tj ETQq0 0 0 rgB	Г /Qyerlock	2 10 Tf 50 14
71	Proteomic Analysis Reveals Suppression of Bark Chitinases and Proteinase Inhibitors in Citrus Plants Affected by the Citrus Sudden Death Disease. Phytopathology, 2008, 98, 1084-1092.	2.2	25

#	Article	IF	CITATIONS
73	Monoamine oxidase inhibitory activities of indolylalkaloid toxins from the venom of the colonial spider Parawixia bistriata: Functional characterization of PwTX-I. Toxicon, 2009, 54, 717-724.	1.6	24
74	Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A ₄ . Mediators of Inflammation, 2016, 2016, 1-11.	3.0	24
75	Silkomics: Insight into the Silk Spinning Process of Spiders. Journal of Proteome Research, 2016, 15, 1179-1193.	3.7	24
76	Molecular cloning, expression and IgE-immunoreactivity of phospholipase A1, a major allergen from Polybia paulista (Hymenoptera: Vespidae) venom. Toxicon, 2016, 124, 44-52.	1.6	24
77	MALDI Imaging Analysis of Neuropeptides in Africanized Honeybee (<i>Apis mellifera</i>) Brain: Effect of Aggressiveness. Journal of Proteome Research, 2018, 17, 2358-2369.	3.7	24
78	Structural characterization of a new acylpolyaminetoxin from the venom of Brazilian garden spider Nephilengys cruentata. Toxicon, 1998, 36, 485-493.	1.6	23
79	Structural characterization of novel chemotactic and mastoparan peptides from the venom of the social waspAgelaiapallipes pallipes by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 636-642.	1.5	23
80	Functional shikimate dehydrogenase from Mycobacterium tuberculosis H37Rv: Purification and characterization. Protein Expression and Purification, 2006, 46, 429-437.	1.3	23
81	Functional Characterization by Genetic Complementation of aroB -Encoded Dehydroquinate Synthase from Mycobacterium tuberculosis H37Rv and Its Heterologous Expression and Purification. Journal of Bacteriology, 2007, 189, 6246-6252.	2.2	23
82	Antifungal Activity, Toxicity, and Membranolytic Action of a Mastoparan Analog Peptide. Frontiers in Cellular and Infection Microbiology, 2019, 9, 419.	3.9	23
83	Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution. PLoS ONE, 2012, 7, e31852.	2.5	23
84	Properties of acid phosphatase from scutella of germinating maize seeds. Phytochemistry, 1981, 20, 1823-1826.	2.9	22
85	Phosphate closes the solution structure of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Mycobacterium tuberculosis. Archives of Biochemistry and Biophysics, 2006, 452, 156-164.	3.0	22
86	Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress and Chaperones, 2011, 16, 565-572.	2.9	22
87	Peptide diversity in the venom of the social wasp Polybia paulista (Hymenoptera): A comparison of the intra- and inter-colony compositions. Peptides, 2014, 51, 122-130.	2.4	22
88	Biochemical response of the Africanized honeybee exposed to fipronil. Environmental Toxicology and Chemistry, 2017, 36, 1652-1660.	4.3	22
89	MALDIâ€imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Management Science, 2019, 75, 607-615.	3.4	22
90	Molecular models of protein targets from Mycobacterium tuberculosis. Journal of Molecular Modeling, 2005, 11, 160-166.	1.8	21

#	Article	IF	CITATIONS
91	The Venomous Secrets of the Web Droplets from the Viscid Spiral of the Orb-Weaver SpiderNephila clavipes (Araneae, Tetragnatidae). Chemistry and Biodiversity, 2006, 3, 727-741.	2.1	21
92	Structural characterization of the major ampullate silk spidroin-2 protein produced by the spider Nephila clavipes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1444-1454.	2.3	21
93	Trypanocidal activity of mastoparan from Polybia paulista wasp venom by interaction with TcGAPDH. Toxicon, 2017, 137, 168-172.	1.6	21
94	Structural and functional characterization of N-terminally blocked peptides isolated from the venom of the social wasp Polybia paulista. Peptides, 2004, 25, 2069-2078.	2.4	20
95	A single nucleotide deletion at the C1 inhibitor gene as the cause of hereditary angioedema: insights from a Brazilian family. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 1384-1390.	5.7	20
96	Production of the First Effective Hyperimmune Equine Serum Antivenom against Africanized Bees. PLoS ONE, 2013, 8, e79971.	2.5	20
97	One-step purification of 5-enolpyruvylshikimate-3-phosphate synthase enzyme from Mycobacterium tuberculosis. Protein Expression and Purification, 2003, 28, 287-292.	1.3	19
98	Structure Determination of Hydroxytrypargine: A New Tetrahydro-?-Carboline Toxin from the Venom of the SpiderParawixia bistriata. Helvetica Chimica Acta, 2005, 88, 796-801.	1.6	19
99	DAHP synthase from Mycobacterium tuberculosis H37Rv: cloning, expression, and purification of functional enzyme. Protein Expression and Purification, 2005, 40, 23-30.	1.3	19
100	Formation of a Ternary Complex for Selenocysteine Biosynthesis in Bacteria. Journal of Biological Chemistry, 2015, 290, 29178-29188.	3.4	19
101	Coagulation Factor XII Gene Mutation in Brazilian Families with Hereditary Angioedema with Normal C1 Inhibitor. International Archives of Allergy and Immunology, 2015, 166, 114-120.	2.1	19
102	Heterologous Expression, Purification and Immunoreactivity of the Antigen 5 from Polybia paulista Wasp Venom. Toxins, 2017, 9, 259.	3.4	19
103	Isolation and chemical characterization of PwTx-II: A novel alkaloid toxin from the venom of the spider Parawixia bistriata (Araneidae, Araneae). Toxicon, 2005, 46, 786-796.	1.6	18
104	Hypoxanthine–guanine phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv: Cloning, expression, and biochemical characterization. Protein Expression and Purification, 2009, 66, 185-190.	1.3	18
105	Allergic reactions to manioc (Manihot esculenta Crantz): Identification of novel allergens with potential involvement in latex-fruit syndrome. Journal of Allergy and Clinical Immunology, 2011, 128, 1367-1369.	2.9	18
106	Cytotoxic, genotoxic/antigenotoxic and mutagenic/antimutagenic effects of the venom of the wasp Polybia paulista. Toxicon, 2013, 72, 64-70.	1.6	18
107	The kinetic mechanism of human uridine phosphorylase 1: Towards the development of enzyme inhibitors for cancer chemotherapy. Archives of Biochemistry and Biophysics, 2010, 497, 35-42.	3.0	17
108	In Situ Metabolomics of the Honeybee Brain: The Metabolism of l-Arginine through the Polyamine Pathway in the Proboscis Extension Response (PER), lournal of Proteome Research, 2020, 19, 832-844.	3.7	17

MÃirio Sérgio Palma

#	Article	IF	CITATIONS
109	Dissociation and catalytic activity of phosphate-repressible alkaline phosphatase from Neurospora crassa. Phytochemistry, 1989, 28, 3281-3284.	2.9	16
110	Nigriventrine: A low molecular mass neuroactive compound from the venom of the spider Phoneutria nigriventer. Toxicon, 2011, 57, 266-274.	1.6	16
111	Proteomic analysis of urine in rats chronically exposed to fluoride. Journal of Biochemical and Molecular Toxicology, 2011, 25, 8-14.	3.0	16
112	Agelaia MP-I: A peptide isolated from the venom of the social wasp, Agelaia pallipes pallipes, enhances insulin secretion in mice pancreatic islets. Toxicon, 2012, 60, 596-602.	1.6	16
113	The Combined Use of Proteomics and Transcriptomics Reveals a Complex Secondary Metabolite Network in <i>Peperomia obtusifolia</i> . Journal of Natural Products, 2017, 80, 1275-1286.	3.0	16
114	Phospholipase A1-based cross-reactivity among venoms of clinically relevant Hymenoptera from Neotropical and temperate regions. Molecular Immunology, 2018, 93, 87-93.	2.2	16
115	Polybioside, a Neuroactive Compound from the Venom of the Social WaspPolybia paulista. Journal of Natural Products, 2010, 73, 527-531.	3.0	15
116	The Mode of Action of Recombinant Mycobacterium tuberculosis Shikimate Kinase: Kinetics and Thermodynamics Analyses. PLoS ONE, 2013, 8, e61918.	2.5	15
117	Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. European Biophysics Journal, 2014, 43, 121-30.	2.2	15
118	B-cell linear epitopes mapping of antigen-5 allergen from Polybia paulista wasp venom. Journal of Allergy and Clinical Immunology, 2015, 135, 264-267.e8.	2.9	15
119	Profiling the short, linear, non-disulfide bond-containing peptidome from the venom of the scorpion Tityus obscurus. Journal of Proteomics, 2018, 170, 70-79.	2.4	15
120	An efficient and versatile synthesis of acylpolyamine spider toxins. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 299-302.	2.2	14
121	Structure Determination of an Organometallic 1-(Diazenylaryl)ethanol: A Novel Toxin Subclass from the Web of the SpiderNephila clavipes. Chemistry and Biodiversity, 2004, 1, 830-838.	2.1	14
122	Molecular Models of Tryptophan Synthase From Mycobacterium tuberculosis Complexed With Inhibitors. Cell Biochemistry and Biophysics, 2006, 44, 375-384.	1.8	14
123	Mastoparan effects in skeletal muscle damage: An ultrastructural view until now concealed. Microscopy Research and Technique, 2008, 71, 220-229.	2.2	14
124	Proteomic Characterization of the Hyaluronidase (E.C. 3.2.1.35) from the Venom of the Social Wasp Polybia paulista. Protein and Peptide Letters, 2012, 19, 625-635.	0.9	14
125	Biochemical, functional, structural and phylogenetic studies on Intercro, a new isoform phospholipase A2 from Crotalus durissus terrificus snake venom. Biochimie, 2013, 95, 2365-2375.	2.6	14

Hyperalgesic and edematogenic effects of Secapin-2, a peptide isolated from Africanized honeybee (Apis) Tj ETQq0.00 rgBT $\frac{10}{14}$ verlock 1

#	Article	IF	CITATIONS
127	Proteome profiling reveals insights into secondary metabolism in Maytenus ilicifolia (Celastraceae) cell cultures producing quinonemethide triterpenes. Plant Cell, Tissue and Organ Culture, 2017, 130, 405-416.	2.3	14
128	Solubilization of Proteins from Human Lymph Node Tissue and Two-Dimensional Gel Storage. BMB Reports, 2006, 39, 216-222.	2.4	14
129	Expression and processing of recombinant sarafotoxins precursor in Pichia pastoris. Toxicon, 2001, 39, 1211-1218.	1.6	13
130	The Rv1712 Locus from <i>Mycobacterium tuberculosis</i> H37Rv Codes for a Functional CMP Kinase That Preferentially Phosphorylates dCMP. Journal of Bacteriology, 2009, 191, 2884-2887.	2.2	13
131	Inflammation and apoptosis induced by mastoparan Polybia-MPII on skeletal muscle. Toxicon, 2010, 55, 1213-1221.	1.6	13
132	Molecular, kinetic, thermodynamic, and structural analyses of Mycobacterium tuberculosis hisD-encoded metal-dependent dimeric histidinol dehydrogenase (EC 1.1.1.23). Archives of Biochemistry and Biophysics, 2011, 512, 143-153.	3.0	13
133	lmmunodominant Antigens of Leishmania chagasi Associated with Protection against Human Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2012, 6, e1687.	3.0	13
134	Structure–function relationships of the peptide Paulistine: A novel toxin from the venom of the social wasp Polybia paulista. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 170-183.	2.4	13
135	UMP kinase from Mycobacterium tuberculosis: Mode of action and allosteric interactions, and their likely role in pyrimidine metabolism regulation. Archives of Biochemistry and Biophysics, 2011, 505, 202-212.	3.0	12
136	The shielding effect of glycerol against protein ionization in electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 672-677.	1.5	11
137	The antiepileptic activity of JSTX-3 is mediated by N-methyl-D-aspartate receptors in human hippocampal neurons. NeuroReport, 2005, 16, 1869-1873.	1.2	11
138	Antiepileptic effect of acylpolyaminetoxin JSTX-3 on rat hippocampal CA1 neurons in vitro. Brain Research, 2005, 1048, 170-176.	2.2	11
139	Seqüenciamento de peptÃdeos usando espectrometria de massas: um guia prático. Quimica Nova, 2008, 31, 669-675.	0.3	11
140	Peptides as toxins/defensins. Amino Acids, 2011, 40, 1-4.	2.7	11
141	Determining the Structural Basis for Specificity of Ligands Using Crystallographic Screening. Cell Biochemistry and Biophysics, 2006, 44, 405-411.	1.8	10
142	Proteomic profiling of the molecular targets of interactions of the mastoparan peptide Protopolybia MPâ€III at the level of endosomal membranes from rat mast cells. Proteomics, 2012, 12, 2682-2693.	2.2	10
143	Digestion of Intact Gluten Proteins by Bifidobacterium Species: Reduction of Cytotoxicity and Proinflammatory Responses. Journal of Agricultural and Food Chemistry, 2020, 68, 4485-4492.	5.2	10

Multiple bradykinin-related peptides from the capture web of the spider Nephila clavipes (Araneae,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
145	Chemometric analysis of Hymenoptera toxins and defensins: A model for predicting the biological activity of novel peptides from venoms and hemolymph. Peptides, 2011, 32, 1924-1933.	2.4	9
146	Crystallization and preliminary X-ray crystallographic analysis of chorismate synthase fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2003-2005.	2.5	8
147	Using a proteometabolomic approach to investigate the role of Dufour's gland in pheromone biosynthesis in the social wasp Polybia paulista. Journal of Proteomics, 2017, 151, 122-130.	2.4	8
148	A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders. Molecular Omics, 2019, 15, 256-270.	2.8	8
149	Revisiting Polybia paulista wasp venom using shotgun proteomics – Insights into the N-linked glycosylated venom proteins. Journal of Proteomics, 2019, 200, 60-73.	2.4	8
150	Comparing activity, toxicity and model membrane interactions of Jelleine-I and Trp/Arg analogs: analysis of peptide aggregation. Amino Acids, 2020, 52, 725-741.	2.7	8
151	Current challenges in molecular diagnostics of insect venom allergy. Allergo Journal International, 2020, 29, 79-91.	2.0	8
152	Effects of Spider Venom Toxin PWTX-I (6-Hydroxytrypargine) on the Central Nervous System of Rats. Toxins, 2011, 3, 142-162.	3.4	7
153	Metabolic profiles of planktonic and biofilm cells of <i>Candida orthopsilosis</i> . Future Microbiology, 2016, 11, 1299-1313.	2.0	7
154	Profiling the proteomics in honeybee worker brains submitted to the proboscis extension reflex. Journal of Proteomics, 2017, 151, 131-144.	2.4	7
155	The effect of acidic pH on the adsorption and lytic activity of the peptides Polybia-MP1 and its histidine-containing analog in anionic lipid membrane: a biophysical study by molecular dynamics and spectroscopy. Amino Acids, 2021, 53, 753-767.	2.7	7
156	Orphan nuclear receptor NGFI-B forms dimers with nonclassical interface. Protein Science, 2007, 16, 1762-1772.	7.6	6
157	Worker Defensive Behavior Associated with Toxins in the Neotropical Termite Neocapritermes braziliensis (Blattaria, Isoptera, Termitidae, Termitinae). Journal of Chemical Ecology, 2019, 45, 755-767.	1.8	6
158	Study of mastoparan analog peptides against <i>Candida albicans</i> and safety in zebrafish embryos (<i>Danio rerio</i>). Future Microbiology, 2019, 14, 1087-1097.	2.0	6
159	Modulatory Effects of Acidic pH and Membrane Potential on the Adsorption of pH-Sensitive Peptides to Anionic Lipid Membrane. Membranes, 2021, 11, 307.	3.0	6
160	The Postpharyngeal Gland: Specialized Organ for Lipid Nutrition in Leaf-Cutting Ants. PLoS ONE, 2016, 11, e0154891.	2.5	6
161	Acid phosphatase from maize scutellum: Succinylation and some kinetic properties of the active enzyme. Phytochemistry, 1981, 20, 2481-2482.	2.9	5
162	Acid phosphatase from maize scutellum: Negative cooperativity suppression by glucose. Phytochemistry, 1983, 22, 1899-1901.	2.9	5

#	Article	IF	CITATIONS
163	The effect of glycerol on signal supression during electrospray ionization analysis of proteins. Spectroscopy, 2004, 18, 339-345.	0.8	5
164	The chelation of metal ions by the acylpolyamine toxins from the web-spider Nephilengys cruentata: effects in the intoxication/detoxification of preys. Chemoecology, 2006, 16, 203-208.	1.1	5
165	Paulistine—The Functional Duality of a Wasp Venom Peptide Toxin. Toxins, 2016, 8, 61.	3.4	5
166	Revealing the Venomous Secrets of the Spider's Web. Journal of Proteome Research, 2020, 19, 3044-3059.	3.7	5
167	Crystallization and preliminary X-ray diffraction analysis of a eumenine mastoparan toxin: a new class of mast-cell degranulating peptide in the wasp venom. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1434-1436.	2.5	4
168	Analyzing glycerol-mediated protein oligomerization by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 2636-2642.	1.5	4
169	The neurotoxicological effects of mastoparan Polybia-MPII at the murine neuromuscular junction: an ultrastructural and immunocytochemical study. Histochemistry and Cell Biology, 2009, 132, 395-404.	1.7	4
170	Salivary glands in workers of Ruptitermes spp. (Blattaria, Isoptera, Termitidae, Apicotermitinae): a morphological and preoteomic approach. Cell and Tissue Research, 2021, 385, 603-621.	2.9	4
171	Kinetic properties of acid phosphatase from scutella of germinating maize seeds. Phytochemistry, 1982, 21, 1245-1247.	2.9	3
172	Properties of a polynucleotide synthesized by strain 74A of Neurospora crassa. Phytochemistry, 1996, 41, 345-348.	2.9	3
173	Identification of the Major Allergens of the Venom from the South American Social Wasp Agelaia Pallipes. Journal of Allergy and Clinical Immunology, 2006, 117, S308.	2.9	3
174	Proteomic-components provide insights into the defensive secretion in termite workers of the soldierless genus Ruptitermes. Journal of Proteomics, 2020, 213, 103622.	2.4	3
175	The Specific Elongation Factor to Selenocysteine Incorporation in Escherichia coli: Unique tRNASec Recognition and its Interactions. Journal of Molecular Biology, 2021, 433, 167279.	4.2	3
176	Kinetic properties of de-repressible alkaline phosphatase (EC 3.1.3.1) from Neurospora crassa. World Journal of Microbiology and Biotechnology, 1991, 7, 244-247.	3.6	2
177	Hydrogen/deuterium exchange mass spectrometry for characterizing phosphoenolpyruvate-induced structural transitions in Mycobacterium tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.1). International Journal of Mass Spectrometry, 2011, 302, 12-18.	1.5	2
178	Proteome Changes Paralleling the Olfactory Conditioning in the Forager Honey Bee and Provision of a Brain Proteomics Dataset. Proteomics, 2019, 19, e1900094.	2.2	2
179	Improved production of the recombinant phospholipase A1 from Polybia paulista wasp venom expressed in bacterial cells for use in routine diagnostics. 3 Biotech, 2020, 10, 217.	2.2	1
180	Use of Proteomic Analysis for Identification of Novel Cockroach Allergens. Journal of Allergy and Clinical Immunology, 2009, 123, S98-S98.	2.9	0

#	Article	IF	CITATIONS
181	Multi-sensitization to hymenoptera venoms: diagnostic and clinical features. World Allergy Organization Journal, 2015, 8, A144.	3.5	0
182	Structural studies of the protein endostatin in fusion with BAX BH3 death domain, a hybrid that presents enhanced antitumoral activity. Biotechnology and Applied Biochemistry, 2017, 64, 356-363.	3.1	0
183	In Situ Proteomic Analysis of Glioblastoma Multiforme: A Translational Approach to Improve Prognostic/Diagnostic Routines. Brazilian Journal of Analytical Chemistry, 2020, 7, .	0.5	0
184	Proteomics: The Science of Functional and Structural Characterization of Proteins. Brazilian Journal of Analytical Chemistry, 2020, 7, 1-2.	0.5	0
185	Proteomic characterization of the fibroin-based silk fibers produced by weaver ant Camponotus textor. Journal of Proteomics, 2022, , 104579.	2.4	0