Ping Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5919391/publications.pdf

Version: 2024-02-01

		249298	242451
65	2,290	26	47
papers	citations	h-index	g-index
C.F.	65	65	2700
65	65	65	3789
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Manipulating the directional emission of monolayer semiconductors by dielectric nanoantenna arrays. Journal of Optics (United Kingdom), 2022, 24, 024005.	1.0	3
2	Control of Plexcitonic Strong Coupling via Substrateâ€Mediated Hotspot Nanoengineering. Advanced Optical Materials, 2022, 10, .	3.6	6
3	Suppressing decoherence in quantum plasmonic systems by the spectral-hole-burning effect. Physical Review A, 2021, 103, .	1.0	3
4	Silicon Nanoantenna Mix Arrays for a Trifecta of Quantum Emitter Enhancements. Nano Letters, 2021, 21, 4853-4860.	4.5	21
5	Ultrastrong coupling in single plexcitonic nanocubes. Nanophotonics, 2020, 9, 257-266.	2.9	19
6	Control of LED Emission with Functional Dielectric Metasurfaces. Laser and Photonics Reviews, 2020, 14, 1900235.	4.4	52
7	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. Nano Letters, 2020, 20, 4645-4652.	4.5	16
8	Gold Nanoearbuds: Seed-Mediated Synthesis and the Emergence of Three Plasmonic Peaks. Journal of Physical Chemistry Letters, 2020, 11, 3211-3217.	2.1	7
9	Quantum Plasmonic Immunoassay Sensing. Nano Letters, 2019, 19, 5853-5861.	4.5	55
10	Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Advanced Optical Materials, 2019, 7, 1801433.	3.6	303
11	Control Enhancement of Dipole Emission Using Hybrid Metal-Dielectric Nanoantenna. , 2018, , .		0
12	Hybrid Mushroom Nanoantenna for Fluorescence Enhancement by Matching the Stokes Shift of the Emitter. Journal of Physical Chemistry C, 2018, 122, 14771-14780.	1.5	14
13	Ultrasensitive Detection of Cancer Prognostic miRNA Biomarkers Based on Surface Plasmon Enhanced Light Scattering. ACS Sensors, 2017, 2, 635-640.	4.0	41
14	Metal–Dielectric Hybrid Dimer Nanoantenna: Coupling between Surface Plasmons and Dielectric Resonances for Fluorescence Enhancement. Journal of Physical Chemistry C, 2017, 121, 12871-12884.	1.5	45
15	Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection. International Journal of Nanomedicine, 2017, Volume 12, 2307-2314.	3.3	30
16	Plasmonic Responses in Metal Nanoslit Array Fabricated by Interference Lithography. Journal of Molecular and Engineering Materials, 2016, 04, 1640007.	0.9	1
17	Investigation of plasmonic signal enhancement based on long range surface plasmon resonance with gold nanoparticle tags. Journal of Materials Chemistry C, 2016, 4, 9897-9904.	2.7	26
18	Highly efficient tunable and localized on-chip electrical plasmon source using protruded metal-insulator-metal structure. Optics Express, 2016, 24, 10663.	1.7	5

#	Article	IF	CITATIONS
19	Charge transfer plasmon resonances across silver–molecule–silver junctions: estimating the terahertz conductance of molecules at near-infrared frequencies. RSC Advances, 2016, 6, 70884-70894.	1.7	17
20	Exploiting Surface-Plasmon-Enhanced Light Scattering for the Design of Ultrasensitive Biosensing Modality. Analytical Chemistry, 2016, 88, 11924-11930.	3.2	26
21	Interference induced periodic oscillation of convolutional-surface-plasmon resonance for a metal nanoparticle encapsulated by a dielectric microsphere. Journal of Optics (United Kingdom), 2016, 18, 075010.	1.0	1
22	Nanoparticle loading effects on the broadband absorption for plasmonic-metal@semiconductor-microsphere photocatalyst. Catalysis Today, 2016, 278, 312-318.	2.2	4
23	Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale, 2016, 8, 8008-8016.	2.8	31
24	Backside Nanoslot Excited Sub-Wavelength Grating-Coupled Cu-Strip Plasmonic Waveguides. Journal of Computational and Theoretical Nanoscience, 2015, 12, 909-915.	0.4	0
25	Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots. Lab on A Chip, 2015, 15, 253-263.	3.1	43
26	Electro-optical graphene plasmonic logic gates. Optics Letters, 2014, 39, 1629.	1.7	73
27	Plasmonic Metals for Nanohole-Array Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Biosensing. Plasmonics, 2014, 9, 825-833.	1.8	14
28	Optical Near-Field Enhancement with Graphene Bowtie Antennas. Plasmonics, 2014, 9, 845-850.	1.8	8
29	Development of Localized Surface Plasmon Resonance-Based Point-of-Care System. Plasmonics, 2014, 9, 835-844.	1.8	15
30	Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science, 2014, 343, 1496-1499.	6.0	388
31	Interference-Induced Broadband Absorption Enhancement for Plasmonic-Metal@Semiconductor Microsphere as Visible Light Photocatalyst. ACS Catalysis, 2014, 4, 4269-4276.	5.5	27
32	Photoluminescence via gap plasmons between single silver nanowires and a thin gold film. Nanoscale, 2013, 5, 12086.	2.8	20
33	High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers. Lab on A Chip, 2013, 13, 2405.	3.1	37
34	Synthesis of Anisotropic Concave Gold Nanocuboids with Distinctive Plasmonic Properties. Chemistry of Materials, 2013, 25, 2470-2475.	3.2	61
35	Incident-angle dependence of fluorescence enhancement and biomarker immunoassay on gold nanohole array. Sensors and Actuators B: Chemical, 2013, 186, 205-211.	4.0	19
36	Fowler–Nordheim Tunneling Induced Charge Transfer Plasmons between Nearly Touching Nanoparticles. ACS Nano, 2013, 7, 707-716.	7.3	114

#	Article	IF	CITATIONS
37	Mid-infrared active graphene nanoribbon plasmonic waveguide devices. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3111.	0.9	56
38	Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator. Nanophotonics, 2013, 2, 13-19.	2.9	47
39	Designing surface plasmon resonance of subwavelength hole arrays by studying absorption. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 521.	0.9	28
40	Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide. Optics Letters, 2012, 37, 4564.	1.7	36
41	Optical Properties of Chiral Three-Dimensional Plasmonic Oligomers at the Onset of Charge-Transfer Plasmons. ACS Nano, 2012, 6, 10355-10365.	7.3	103
42	Design of Subwavelength CMOS Compatible Plasmonic Photodetector for Nano-Electronic-Photonic Integrated Circuits. IEEE Photonics Technology Letters, 2012, 24, 515-517.	1.3	12
43	Vandium dioxide active plasmonics. , 2012, , .		1
44	Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Optics Communications, 2012, 285, 3709-3713.	1.0	13
45	CMOS-compatible Plasmonic Waveguide Platform and Ring Resonator for Nanoscale Electronic-photonic Integrated Circuits. , 2012, , .		0
46	Characterization of planar hybrid dielectric-loaded plasmonic nano-waveguides used for nano-photonic circuits. , $2011, \ldots$		1
47	Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2895.	0.9	33
48	Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Optics Express, 2011, 19, 17075.	1.7	28
49	Hybrid Dielectric-Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuits. Plasmonics, 2011, 6, 591-597.	1.8	46
50	Using post-breakdown conduction study in a MIS structure to better understand the resistive switching mechanism in an MIM stack. Nanotechnology, 2011, 22, 455702.	1.3	12
51	Multiphysics modeling of plasmonic nanodevices. , 2011, , .		0
52	Integration of plasmonics into nanoelectronic circuits. Physica B: Condensed Matter, 2010, 405, 2978-2981.	1.3	4
53	Graphene nanoribbon band-gap expansion: Broken-bond-induced edge strain and quantum entrapment. Nanoscale, 2010, 2, 2160.	2.8	38
54	Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna. IEEE Photonics Technology Letters, 2010, 22, 245-247.	1.3	20

#	Article	IF	CITATIONS
55	Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. Nanoscale, 2010, 2, 412-417.	2.8	36
56	Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96, .	1.5	143
57	Plasmonics NanoSensor. Advanced Materials Research, 2009, 74, 13-16.	0.3	1
58	Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity. Optics Express, 2009, 17, 24349.	1.7	24
59	Synthesis and Electrical Characterization of Oligo(phenylene ethynylene) Molecular Wires Coordinated to Transition Metal Complexes. ACS Nano, 2009, 3, 2103-2114.	7.3	32
60	Gate Leakage Analysis of Nano-MOSFETs using Ensemble Full Band Monte Carlo with Quantum Correction. , 2007, , .		2
61	Effects of metal–molecule interface conformations on the electron transport of single molecule. Current Applied Physics, 2006, 6, 531-535.	1.1	11
62	A MOLECULAR DIODE BASED ON CONJUGATED CO-OLIGOMERS. International Journal of Nanoscience, 2006, 05, 535-540.	0.4	2
63	Theoretical investigation of metal-molecule interface with terminal groups. IEEE Nanotechnology Magazine, 2005, 4, 422-429.	1.1	10
64	INVESTIGATION OF ELECTRON TRANSPORT OF OPEN MOLECULAR STRUCTURES BASED ON FIRST PRINCIPLES THEORY. International Journal of Nanoscience, 2004, 03, 533-540.	0.4	6
65	A novel hydrodynamic model for nanoscale devices simulation. Microelectronics Journal, 2003, 34, 289-296.	1.1	O