
## Fiona N Newell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5919177/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Urban and rural environments differentially shape multisensory perception in ageing. Aging,<br>Neuropsychology, and Cognition, 2022, 29, 197-212.                            | 1.3 | 9         |
| 2  | "CityQuest,―A Custom-Designed Serious Game, Enhances Spatial Memory Performance in Older Adults.<br>Frontiers in Aging Neuroscience, 2022, 14, 806418.                       | 3.4 | 5         |
| 3  | Multisensory Perception and Learning: Linking Pedagogy, Psychophysics, and Human–Computer<br>Interaction. Multisensory Research, 2022, 35, 335-366.                          | 1.1 | 3         |
| 4  | Multisensory integration precision is associated with better cognitive performance over time in older adults: A large-scale exploratory study. Aging Brain, 2022, 2, 100038. | 1.3 | 13        |
| 5  | Perceptual training narrows the temporal binding window of audiovisual integration in both younger and older adults. Neuropsychologia, 2022, 173, 108309.                    | 1.6 | 15        |
| 6  | Gray matter volume in the right angular gyrus is associated with differential patterns of multisensory integration with aging. Neurobiology of Aging, 2021, 100, 83-90.      | 3.1 | 14        |
| 7  | The development of visuotactile congruency effects for sequences of events. Journal of Experimental<br>Child Psychology, 2021, 207, 105094.                                  | 1.4 | 0         |
| 8  | Haptic recognition memory and lateralisation for verbal and nonverbal shapes. Memory, 2021, 29, 1043-1057.                                                                   | 1.7 | 0         |
| 9  | Children's spatial–numerical associations on horizontal, vertical, and sagittal axes. Journal of<br>Experimental Child Psychology, 2021, 209, 105169.                        | 1.4 | 12        |
| 10 | Holistic processing of faces and words predicts reading accuracy and speed in dyslexic readers. PLoS<br>ONE, 2021, 16, e0259986.                                             | 2.5 | 8         |
| 11 | The effect of eye disease, cataract surgery and hearing aid use on multisensory integration in ageing.<br>Cortex, 2020, 133, 161-176.                                        | 2.4 | 11        |
| 12 | What you see is what you hear: Twenty years of research using the Sound-Induced Flash Illusion.<br>Neuroscience and Biobehavioral Reviews, 2020, 118, 759-774.               | 6.1 | 63        |
| 13 | Laterality effects in the haptic discrimination of verbal and non-verbal shapes. Laterality, 2020, 25, 654-674.                                                              | 1.0 | 3         |
| 14 | Changes in perceptual category affects serial dependence in judgements of attractiveness. Visual<br>Cognition, 2020, 28, 557-580.                                            | 1.6 | 1         |
| 15 | Seeing an image of the hand affects performance on a crossmodal congruency task for sequences of events. Consciousness and Cognition, 2020, 80, 102900.                      | 1.5 | 0         |
| 16 | Turning Heads: The Effects of Face View and Eye Gaze Direction on the Perceived Attractiveness of Expressive Faces. Perception, 2020, 49, 330-356.                           | 1.2 | 2         |
| 17 | 351 Integration of Auditory and Visual Information is Associated with Ageing, Sex and Cognitive Performance. Age and Ageing, 2019, 48, iii17-iii65.                          | 1.6 | 0         |
| 18 | Do synaesthesia and mental imagery tap into similar cross-modal processes?. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180359.  | 4.0 | 7         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Age-related sensory decline mediates the Sound-Induced Flash Illusion: Evidence for reliability weighting models of multisensory perception. Scientific Reports, 2019, 9, 19347.                                 | 3.3 | 23        |
| 20 | Individual differences in ageing, cognitive status, and sex on susceptibility to the sound-induced flash<br>illusion: A large-scale study Psychology and Aging, 2019, 34, 978-990.                               | 1.6 | 46        |
| 21 | Changes in Regional Brain Grey-Matter Volume Following Successful Completion of a Sensori-Motor<br>Intervention Targeted at Healthy and Fall-Prone OlderÂAdults. Multisensory Research, 2018, 31, 317-344.       | 1.1 | 7         |
| 22 | Aging Impairs Audiovisual Facilitation of Object Motion Within Self-Motion. Multisensory Research, 2018, 31, 251-272.                                                                                            | 1.1 | 6         |
| 23 | Acceptability of a custom-designed game, CityQuest, aimed at improving balance confidence and spatial cognition in fall-prone and healthy older adults. Behaviour and Information Technology, 2018, 37, 538-557. | 4.0 | 15        |
| 24 | Crowded environments reduce spatial memory in older but not younger adults. Psychological<br>Research, 2018, 82, 407-428.                                                                                        | 1.7 | 16        |
| 25 | Temporal shifts in eye gaze and facial expressions independently contribute to the perceived attractiveness of unfamiliar faces. Visual Cognition, 2018, 26, 831-852.                                            | 1.6 | 6         |
| 26 | Tactile-to-Visual Cross-Modal Transfer of Texture Categorisation Following Training: An fMRI Study.<br>Frontiers in Integrative Neuroscience, 2018, 12, 24.                                                      | 2.1 | 6         |
| 27 | Crossmodal priming of unfamiliar faces supports early interactions between voices and faces in person perception. Visual Cognition, 2017, 25, 611-628.                                                           | 1.6 | 12        |
| 28 | Individual differences in context-dependent effects reveal common mechanisms underlying the direction aftereffect and direction repulsion. Vision Research, 2017, 141, 109-116.                                  | 1.4 | 6         |
| 29 | Introduction to the Special Issue on Synaesthesia and Cross-Modal Perception. Multisensory<br>Research, 2017, 30, 195-197.                                                                                       | 1.1 | Ο         |
| 30 | Perceptual and Social Attributes Underlining Age-Related Preferences for Faces. Frontiers in Human<br>Neuroscience, 2016, 10, 437.                                                                               | 2.0 | 16        |
| 31 | Perceptual learning shapes multisensory causal inference via two distinct mechanisms. Scientific<br>Reports, 2016, 6, 24673.                                                                                     | 3.3 | 33        |
| 32 | Familiar environments enhance object and spatial memory in both younger and older adults.<br>Experimental Brain Research, 2016, 234, 1555-1574.                                                                  | 1.5 | 30        |
| 33 | Task-specific transfer of perceptual learning across sensory modalities. Current Biology, 2016, 26,<br>R20-R21.                                                                                                  | 3.9 | 35        |
| 34 | Multisensory integration and cross-modal learning in synaesthesia: A unifying model.<br>Neuropsychologia, 2016, 88, 140-150.                                                                                     | 1.6 | 28        |
| 35 | Successful balance training is associated with improved multisensory function in fall-prone older adults. Computers in Human Behavior, 2015, 45, 192-203.                                                        | 8.5 | 59        |
| 36 | Task-Specific, Age Related Effects in the Cross-Modal Identification and Localisation of Objects.<br>Multisensory Research, 2015, 28, 111-151.                                                                   | 1.1 | 13        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Non-rigid, but not rigid, motion interferes with the processing of structural face information in developmental prosopagnosia. Neuropsychologia, 2015, 70, 281-295.                                                        | 1.6 | 6         |
| 38 | Strutting Hero, Sneaking Villain. ACM Transactions on Applied Perception, 2015, 13, 1-21.                                                                                                                                  | 1.9 | 1         |
| 39 | A Wii Bit of Fun: A Novel Platform to Deliver Effective Balance Training to Older Adults. Games for<br>Health Journal, 2015, 4, 423-433.                                                                                   | 2.0 | 50        |
| 40 | The sound-induced flash illusion reveals dissociable age-related effects in multisensory integration.<br>Frontiers in Aging Neuroscience, 2014, 6, 250.                                                                    | 3.4 | 92        |
| 41 | Motion facilitates face perception across changes in viewpoint and expression in older adults<br>Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 2266-2280.                                | 0.9 | 6         |
| 42 | A standing posture is associated with increased susceptibility to the sound-induced flash illusion in fall-prone older adults. Experimental Brain Research, 2014, 232, 423-434.                                            | 1.5 | 59        |
| 43 | Improving the efficiency of multisensory integration in older adults: Audio-visual temporal<br>discrimination training reduces susceptibility to the sound-induced flash illusion. Neuropsychologia,<br>2014, 61, 259-268. | 1.6 | 96        |
| 44 | Ambient visual information confers a context-specific, long-term benefit on memory for haptic scenes.<br>Cognition, 2013, 128, 363-379.                                                                                    | 2.2 | 49        |
| 45 | Reduced Vision Selectively Impairs Spatial Updating in Fall-prone Older Adults. Multisensory Research, 2013, 26, 69-94.                                                                                                    | 1.1 | 18        |
| 46 | Perception and prediction of social intentions from human body motion. , 2013, , .                                                                                                                                         |     | 3         |
| 47 | Effects of ageing and sound on perceived timing of human interactions. , 2013, , .                                                                                                                                         |     | Ο         |
| 48 | The effect of non-informative spatial sounds on haptic scene recognition. International Journal of Autonomous and Adaptive Communications Systems, 2013, 6, 342.                                                           | 0.3 | 2         |
| 49 | Synesthesia, Meaning, and Multilingual Speakers. , 2013, , .                                                                                                                                                               |     | 36        |
| 50 | Susceptibility to a multisensory speech illusion in older persons is driven by perceptual processes.<br>Frontiers in Psychology, 2013, 4, 575.                                                                             | 2.1 | 40        |
| 51 | Combined structural and functional imaging reveals cortical deactivations in grapheme-color synaesthesia. Frontiers in Psychology, 2013, 4, 755.                                                                           | 2.1 | 20        |
| 52 | The Effect of the Neurogranin Schizophrenia Risk Variant rs12807809 on Brain Structure and Function. Twin Research and Human Genetics, 2012, 15, 296-303.                                                                  | 0.6 | 26        |
| 53 | Evidence for Crossmodal Interactions across Depth on Target Localisation Performance in a Spatial Array. Perception, 2012, 41, 757-773.                                                                                    | 1.2 | 5         |
| 54 | The sound of the crowd: Auditory information modulates the perceived emotion of a crowd based on bodily expressions Emotion, 2012, 12, 120-131.                                                                            | 1.8 | 4         |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Integration of faces and voices, but not faces and names, in person recognition. British Journal of Psychology, 2012, 103, 73-82.                                                                            | 2.3 | 24        |
| 56 | A glance back on 50 years of research in perception. Irish Journal of Psychology, 2012, 33, 65-71.                                                                                                           | 0.2 | 2         |
| 57 | The NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals. NeuroImage, 2012, 60, 614-622.                                                | 4.2 | 26        |
| 58 | ls maintaining balance during standing associated with inefficient audio–visual integration in older adults?. Seeing and Perceiving, 2012, 25, 50.                                                           | 0.3 | 0         |
| 59 | The effect of balance training on audio–visual integrationÂinÂolder adults. Seeing and Perceiving, 2012,<br>25, 155.                                                                                         | 0.3 | Ο         |
| 60 | Inefficient cross-sensory temporal integration in olderÂpersons with a history of falling. Seeing and Perceiving, 2012, 25, 210.                                                                             | 0.3 | 2         |
| 61 | The Effect of Combined Sensory and Semantic Components on Audio–Visual Speech Perception in<br>Older Adults. Frontiers in Aging Neuroscience, 2011, 3, 19.                                                   | 3.4 | 35        |
| 62 | Audiovisual temporal discrimination is less efficient with aging. NeuroReport, 2011, 22, 554-558.                                                                                                            | 1.2 | 58        |
| 63 | Is inefficient multisensory processing associated with falls in older people?. Experimental Brain Research, 2011, 209, 375-384.                                                                              | 1.5 | 152       |
| 64 | Active and passive touch differentially activate somatosensory cortex in texture perception. Human<br>Brain Mapping, 2011, 32, 1067-1080.                                                                    | 3.6 | 86        |
| 65 | The role of social cues in the deployment of spatial attention: head-body relationships automatically activate directional spatial codes in a Simon task. Frontiers in Integrative Neuroscience, 2011, 6, 4. | 2.1 | 18        |
| 66 | Perceiving emotion in crowds: the role of dynamic body postures on the perception of emotion in crowded scenes. Experimental Brain Research, 2010, 204, 361-372.                                             | 1.5 | 31        |
| 67 | Multisensory Processing in Review: from Physiology to Behaviour. Seeing and Perceiving, 2010, 23, 3-38.                                                                                                      | 0.3 | 239       |
| 68 | The effect of body and part-based motion on the recognition of unfamiliar objects. Visual Cognition, 2010, 18, 456-480.                                                                                      | 1.6 | 9         |
| 69 | Static images of novel, moveable objects learned through touch activate visual area hMT+.<br>NeuroImage, 2010, 49, 1708-1716.                                                                                | 4.2 | 6         |
| 70 | Visuo-haptic Perception of Objects and Scenes. , 2010, , 251-271.                                                                                                                                            |     | 3         |
| 71 | Colored-Speech Synaesthesia Is Triggered by Multisensory, Not Unisensory, Perception. Psychological<br>Science, 2009, 20, 529-533.                                                                           | 3.3 | 23        |
| 72 | Investigating the role of body shape on the perception of emotion. ACM Transactions on Applied Perception, 2009, 6, 1-11.                                                                                    | 1.9 | 37        |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Evaluating the effect of motion and body shape on the perceived sex of virtual characters. ACM<br>Transactions on Applied Perception, 2009, 5, 1-14.                     | 1.9 | 28        |
| 74 | An exploratory study of linguistic–colour associations across languages in multilingual synaesthetes. Quarterly Journal of Experimental Psychology, 2009, 62, 1343-1355. | 1.1 | 20        |
| 75 | Short Article: Are Attractive Facial Characteristics Peculiar to the Sex of a Face?. Quarterly Journal of Experimental Psychology, 2009, 62, 833-843.                    | 1.1 | 2         |
| 76 | Synaesthesia is associated with enhanced, self-rated visual imagery. Consciousness and Cognition, 2008, 17, 1032-1039.                                                   | 1.5 | 113       |
| 77 | Behavioral evidence for task-dependent "what" versus "where" processing within and across modalities. Perception & Psychophysics, 2008, 70, 36-49.                       | 2.3 | 36        |
| 78 | Vision and touch: Independent or integrated systems for the perception of texture?. Brain Research, 2008, 1242, 59-72.                                                   | 2.2 | 106       |
| 79 | Menstrual cycle phase modulates cognitive control over male but not female stimuli. Brain Research, 2008, 1224, 79-87.                                                   | 2.2 | 31        |
| 80 | Familial patterns and the origins of individual differences in synaesthesia. Cognition, 2008, 106, 871-893.                                                              | 2.2 | 144       |
| 81 | Differences in early sensory-perceptual processing in synesthesia: A visual evoked potential study.<br>NeuroImage, 2008, 43, 605-613.                                    | 4.2 | 101       |
| 82 | Canonical Views in Haptic Object Perception. Perception, 2008, 37, 1867-1878.                                                                                            | 1.2 | 23        |
| 83 | Evaluating the emotional content of human motions on real and virtual characters. , 2008, , .                                                                            |     | 40        |
| 84 | Investigating Visuo-tactile Recognition of Unfamiliar Moving Objects. Lecture Notes in Computer Science, 2008, , 308-312.                                                | 1.3 | 1         |
| 85 | The Natural Truth: The Contribution of Vision and Touch in the Categorisation of "Naturalness―<br>Lecture Notes in Computer Science, 2008, , 319-324.                    | 1.3 | 2         |
| 86 | Virtual shapers & movers. , 2007, , .                                                                                                                                    |     | 24        |
| 87 | Multisensory recognition of actively explored objects Canadian Journal of Experimental Psychology, 2007, 61, 242-253.                                                    | 0.8 | 34        |
| 88 | New Insights into Multisensory Perception. Perception, 2007, 36, 1415-1417.                                                                                              | 1.2 | 9         |
| 89 | The role of visual experience on the representation and updating of novel haptic scenes. Brain and Cognition, 2007, 65, 184-194.                                         | 1.8 | 63        |
| 90 | Are representations of unfamiliar faces independent of encoding modality?. Neuropsychologia, 2007, 45, 506-513.                                                          | 1.6 | 26        |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The role of familiarity in the recognition of static and dynamic objects. Progress in Brain Research, 2006, 154, 315-325.                                                           | 1.4 | 21        |
| 92  | Visual, haptic and crossmodal recognition of scenes. Experimental Brain Research, 2005, 161, 233-242.                                                                               | 1.5 | 99        |
| 93  | Visual and haptic representations of scenes are updated with observer movement. Experimental Brain<br>Research, 2005, 166, 481-488.                                                 | 1.5 | 83        |
| 94  | The role of long-term and short-term familiarity in visual and haptic face recognition. Experimental<br>Brain Research, 2005, 166, 583-591.                                         | 1.5 | 18        |
| 95  | The interaction of shape- and location-based priming in object categorisation: Evidence for a hybrid<br>"what+where―representation stage. Vision Research, 2005, 45, 2065-2080.     | 1.4 | 28        |
| 96  | The role of characteristic motion in object categorization. Journal of Vision, 2004, 4, 5.                                                                                          | 0.3 | 34        |
| 97  | Is object search mediated by object-based or image-based representations?. Spatial Vision, 2004, 17, 511-541.                                                                       | 1.4 | 12        |
| 98  | Familiarity Breeds Attraction: Effects of Exposure on the Attractiveness of Typical and Distinctive Faces. Perception, 2004, 33, 147-157.                                           | 1.2 | 85        |
| 99  | Categorical perception of sex occurs in familiar but not unfamiliar faces. Visual Cognition, 2004, 11, 823-855.                                                                     | 1.6 | 38        |
| 100 | Visual, haptic and cross-modal recognition of objects and scenes. Journal of Physiology (Paris), 2004, 98, 147-159.                                                                 | 2.1 | 41        |
| 101 | The effect of temporal delay and spatial differences on cross-modal object recognition. Cognitive,<br>Affective and Behavioral Neuroscience, 2004, 4, 260-269.                      | 2.0 | 27        |
| 102 | Categorical perception of familiar objects. Cognition, 2002, 85, 113-143.                                                                                                           | 2.2 | 63        |
| 103 | Viewpoint Dependence in Visual and Haptic Object Recognition. Psychological Science, 2001, 12, 37-42.                                                                               | 3.3 | 231       |
| 104 | Recognizing Unfamiliar Faces: The Effects of Distinctiveness and View. Quarterly Journal of<br>Experimental Psychology Section A: Human Experimental Psychology, 1999, 52, 509-534. | 2.3 | 48        |
| 105 | Recognizing Unfamiliar Faces: The Effects of Distinctiveness and View. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1999, 52, 509-534.    | 2.3 | 13        |
| 106 | Stimulus Context and View Dependence in Object Recognition. Perception, 1998, 27, 47-68.                                                                                            | 1.2 | 21        |
| 107 | The Effect of Depth Rotation on Object Identification. Perception, 1997, 26, 1231-1257.                                                                                             | 1.2 | 50        |
| 108 | Viewpoint Invariance in Object Recognition. Irish Journal of Psychology, 1992, 13, 494-507.                                                                                         | 0.2 | 3         |