Theeraphap Chareonviriyaphap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5918875/publications.pdf

Version: 2024-02-01

180 papers 4,640 citations

147726 31 h-index 57 g-index

183 all docs

183 docs citations

times ranked

183

3686 citing authors

#	Article	lF	CITATIONS
1	A global map of dominant malaria vectors. Parasites and Vectors, 2012, 5, 69.	1.0	485
2	The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasites and Vectors, 2011, 4, 89.	1.0	401
3	A New Classification System for the Actions of IRS Chemicals Traditionally Used For Malaria Control. PLoS ONE, 2007, 2, e716.	1.1	191
4	Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites and Vectors, 2013, 6, 280.	1.0	189
5	Developing Global Maps of the Dominant Anopheles Vectors of Human Malaria. PLoS Medicine, 2010, 7, e1000209.	3.9	161
6	Identifying genomic changes associated with insecticide resistance in the dengue mosquito <i>Aedes aegypti</i> by deep targeted sequencing. Genome Research, 2015, 25, 1347-1359.	2.4	151
7	Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infection, Genetics and Evolution, 2010, 10, 159-177.	1.0	129
8	Insecticide Susceptible/Resistance Status in <i>Aedes</i> (<i>Stegomyia) aegypti</i> and <i>Aedes (Stegomyia) albopictus</i> (Diptera: Culicidae) in Thailand During 2003–2005. Journal of Economic Entomology, 2007, 100, 545-550.	0.8	104
9	Behavioral Responses of <l>Aedes aegypti</l> (Diptera: Culicidae) Exposed to Deltamethrin and Possible Implications for Disease Control. Journal of Medical Entomology, 2004, 41, 1055-1063.	0.9	74
10	Plants traditionally used as mosquito repellents and the implication for their use in vector control. Acta Tropica, 2016, 157, 136-144.	0.9	66
11	Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends in Parasitology, 2015, 31, 109-119.	1.5	63
12	Frequency of pyrethroid resistance in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Thailand. Journal of Vector Ecology, 2011, 36, 204-212.	0.5	56
13	Species diversity and biting activity of Anopheles dirus and Anopheles baimaii (Diptera: Culicidae) in a malaria prone area of western Thailand. Parasites and Vectors, 2012, 5, 211.	1.0	53
14	Contribution of Asymptomatic Plasmodium Infections to the Transmission of Malaria in Kayin State, Myanmar. Journal of Infectious Diseases, 2019, 219, 1499-1509.	1.9	50
15	Excito-repellency properties of essential oils from Melaleuca leucadendron L., Litsea cubeba (Lour.) Persoon, and Litsea salicifolia (Nees) on Aedes aegypti (L.) mosquitoes. Journal of Vector Ecology, 2008, 33, 305-312.	0.5	49
16	Seasonal Abundance and Blood Feeding Activity of <i>Anopheles minimus</i> Theobald (Diptera:) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 50
17	Insecticide resistance of Aedes aegypti and Culex quinquefasciatus in Thailand. Journal of Pesticide Sciences, 2008, 33, 351-356.	0.8	47
18	Initial Assessment of the Acceptability of a Push-Pull Aedes aegypti Control Strategy in Iquitos, Peru and Kanchanaburi, Thailand. American Journal of Tropical Medicine and Hygiene, 2011, 84, 208-217.	0.6	44

#	Article	IF	Citations
19	Anopheles Salivary Biomarker to Assess Malaria Transmission Risk Along the Thailand-Myanmar Border. Journal of Infectious Diseases, 2017, 215, jiw543.	1.9	44
20	Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia. Trends in Parasitology, 2013, 29, 623-633.	1.5	43
21	BEHAVIORAL RESPONSES TO DDT AND PYRETHROIDS BETWEEN ANOPHELES MINIMUS SPECIES A AND C, MALARIA VECTORS IN THAILAND. American Journal of Tropical Medicine and Hygiene, 2005, 73, 343-349.	0.6	43
22	Trophic behavior and biting activity of the two sibling species of the Anopheles minimus complex in western Thailand. Journal of Vector Ecology, 2006, 31, 252-261.	0.5	42
23	An improved excito-repellency test chamber for mosquito behavioral tests. Journal of Vector Ecology, 2002, 27, 250-2.	0.5	38
24	Synergistic repellent and irritant effect of combined essential oils on <i>Aedes aegypti</i> (L.) mosquitoes. Journal of Vector Ecology, 2014, 39, 298-305.	0.5	37
25	Larval habitats and distribution patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 2003, 34, 529-35.	1.0	37
26	Characterization of deltamethrin resistance in field populations of Aedes aegypti in Thailand. Journal of Vector Ecology, 2005, 30, 144-50.	0.5	36
27	Host feeding patterns and preference of Anopheles minimus (Diptera: Culicidae) in a malaria endemic area of western Thailand: baseline site description. Parasites and Vectors, 2012, 5, 114.	1.0	34
28	Behavioral responses of <i>Aedes aegypti, Aedes albopictus, Culex quinquefasciatus</i> , and <i>Anopheles minimus</i> against various synthetic and natural repellent compounds. Journal of Vector Ecology, 2014, 39, 328-339.	0.5	34
29	Behavioral Responses of Catnip (Nepeta cataria) by Two Species of Mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand. Journal of the American Mosquito Control Association, 2008, 24, 513-519.	0.2	33
30	Behavioral responses of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) to four essential oils in Thailand. Journal of Pest Science, 2013, 86, 309-320.	1.9	33
31	CYTOCHROME P450 GENES: MOLECULAR CLONING AND OVEREXPRESSION IN A PYRETHROID-RESISTANT STRAIN OF ANOPHELES MINIMUS MOSQUITO. Journal of the American Mosquito Control Association, 2005, 21, 71-79.	0.2	32
32	Insecticide resistance in malaria vectors along the Thailand-Myanmar border. Parasites and Vectors, 2017, 10, 165.	1.0	32
33	Excito-repellent activity of \hat{l}^2 -caryophyllene oxide against Aedes aegypti and Anopheles minimus. Acta Tropica, 2019, 197, 105030.	0.9	32
34	Irritancy and Repellency Behavioral Responses of Three Strains of <i>Aedes aegypti </i> Exposed to DDT and <i>ݱ </i> Cypermethrin. Journal of Medical Entomology, 2009, 46, 1407-1414.	0.9	31
35	Status of insecticide resistance in Anopheles mosquitoes in Ubon Ratchathani province, Northeastern Thailand. Malaria Journal, 2017, 16, 299.	0.8	31
36	Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals. PLoS Neglected Tropical Diseases, 2013, 7, e2074.	1.3	30

#	Article	IF	CITATIONS
37	Diversity of Anopheles species and trophic behavior of putative malaria vectors in two malaria endemic areas of northwestern Thailand. Journal of Vector Ecology, 2014, 39, 424-436.	0.5	29
38	A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasites and Vectors, 2019, 12, 223.	1.0	29
39	Excito-repellency of deltamethrin on the malaria vectors, Anopheles minimus, Anopheles dirus, Anopheles swadiwongporni, and Anopheles maculatus, in Thailand. Journal of the American Mosquito Control Association, 2004, 20, 45-54.	0.2	29
40	Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects, 2019, 10, 178.	1.0	28
41	Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin. Journal of Vector Ecology, 2003, 28, 150-8.	0.5	28
42	Biting activity and host preference of the malaria vectors Anopheles maculatus and Anopheles sawadwongporni (Diptera: Culicidae) in Thailand. Journal of Vector Ecology, 2009, 34, 62-69.	0.5	27
43	Vector Biology and Malaria Transmission in Southeast Asia. , 0, , .		27
44	The effects of plant essential oils on escape response and mortality rate of <i>Aedes aegypti</i> and <i>Anopheles minimus</i> . Journal of Vector Ecology, 2015, 40, 318-326.	0.5	27
45	Vector bionomics and malaria transmission along the Thailand-Myanmar border: a baseline entomological survey. Journal of Vector Ecology, 2017, 42, 84-93.	0.5	27
46	Irritability and repellency of synthetic pyrethroids on an Aedes aegypti population from Thailand. Journal of Vector Ecology, 2009, 34, 217-224.	0.5	26
47	Excito-repellency of essential oils against an <i>Aedes aegypti</i> (L.) field population in Thailand. Journal of Vector Ecology, 2014, 39, 112-122.	0.5	26
48	Susceptibility and avoidance behavior by Culex quinquefasciatus Say to three classes of residual insecticides. Journal of Vector Ecology, 2006, 31, 266-274.	0.5	25
49	Malaria Vectors and Species Complexes in Thailand: Implications for Vector Control. Trends in Parasitology, 2019, 35, 544-558.	1.5	25
50	Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinelâ,,¢ trap catches. Parasites and Vectors, 2013, 6, 145.	1.0	24
51	Relationship between Aedes aegypti production and occurrence of Escherichia coli in domestic water storage containers in rural and sub-urban villages in Thailand and Laos. Acta Tropica, 2013, 126, 177-185.	0.9	24
52	The effect of host type on movement patterns of Aedes aegypti (Diptera: Culicidae) into and out of experimental huts in Thailand. Journal of Vector Ecology, 2006, 31, 311-318.	0.5	23
53	Susceptibility of various mosquitoes of Thailand to nocturnal subperiodic Wuchereria bancrofti. Journal of Vector Ecology, 2008, 33, 313-320.	0.5	23
54	Biochemical detection of pyrethroid resistance mechanisms in Anopheles minimus in Thailand. Journal of Vector Ecology, 2003, 28, 108-16.	0.5	23

#	Article	IF	Citations
55	INSECTICIDE-INDUCED BEHAVIORAL RESPONSES IN TWO POPULATIONS OF ANOPHELES MACULATUS AND ANOPHELES SAWADWONGPORNI, MALARIA VECTORS IN THAILAND. Journal of the American Mosquito Control Association, 2006, 22, 689-698.	0.2	22
56	Influence of nutritional and physiological status on behavioral responses of Aedes aegypti (Diptera:) Tj ETQq0 0 0 0	rgBT /Over	lock 10 Tf 5
57	Feeding response of Aedes aegypti and Anopheles dirus (Diptera: Culicidae) using out-of-date human blood in a membrane feeding apparatus. Journal of Vector Ecology, 2010, 35, 149-155.	0.5	22
58	Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Research, 2018, 3, 109.	0.9	22
59	Seasonal Abundance and Bloodfeeding Activity of Anopheles dirus Sensu Lato in Western Thailand. Journal of the American Mosquito Control Association, 2009, 25, 425-430.	0.2	21
60	Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Research, 2018, 3, 109.	0.9	21
61	HOW RELIABLE IS THE HUMERAL PALE SPOT FOR IDENTIFICATION OF CRYPTIC SPECIES OF THE MINIMUS COMPLEX?. Journal of the American Mosquito Control Association, 2006, 22, 185-191.	0.2	20
62	Effects of environmental conditions on the movement patterns of Aedes aegypti (Diptera: Culicidae) into and out of experimental huts in Thailand. Journal of Vector Ecology, 2009, 34, 267-275.	0.5	20
63	Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera: Culicidae) push-pull control strategy. Journal of Vector Ecology, 2012, 37, 8-19.	0.5	19
64	Species identification of horse flies (Diptera: Tabanidae) in Thailand using DNA barcoding. Veterinary Parasitology, 2018, 259, 35-43.	0.7	19
65	A High Throughput Screening System for Determining the Three Actions of Insecticides AgainstAedes aegypti(Diptera: Culicidae) Populations in Thailand. Journal of Medical Entomology, 2010, 47, 833-841.	0.9	18
66	Discriminating Lethal Concentrations and Efficacy of Six Pyrethroids for Control of Aedes aegypti in Thailand. Journal of the American Mosquito Control Association, 2012, 28, 30-37.	0.2	18
67	Comparison of <i> Aedes aegypti </i> (Diptera: Culicidae) Resting Behavior on Two Fabric Types Under Consideration for Insecticide Treatment in a Push-Pull Strategy. Journal of Medical Entomology, 2013, 50, 59-68.	0.9	18
68	Behavioral Responses of Malaria Vectors, Anopheles minimus Complex, to Three Classes of Agrochemicals in Thailand. Journal of Medical Entomology, 2007, 44, 1032-1039.	0.9	17
69	Geographic Distribution of Stomoxyine Flies (Diptera: Muscidae) and Diurnal Activity of <i>Stomoxys calcitrans</i> in Thailand. Journal of Medical Entomology, 2010, 47, 791-797.	0.9	17
70	Chemically induced behavioral responses in Anopheles minimus and Anopheles harrisoni in Thailand. Journal of Vector Ecology, 2011, 36, 321-331.	0.5	17
71	Establishment of Diagnostic Doses of Five Pyrethroids for Monitoring Physiological Resistance in <i>Aedes Albopictus < /i>in Thailand. Journal of the American Mosquito Control Association, 2015, 31, 346-352.</i>	0.2	17
72	Comparison of Field and Laboratory-Based Tests for Behavioral Response of <i>Aedes aegypti (i) (Diptera: Culicidae) to Repellents. Journal of Economic Entomology, 2015, 108, 2770-2778.</i>	0.8	17

#	Article	IF	Citations
73	Avoidance Behavior to Essential Oils by <i>Anopheles minimus < /i>, a Malaria Vector in Thailand. Journal of the American Mosquito Control Association, 2016, 32, 34-43.</i>	0.2	17
74	Pathogenesis of Thai duck Tembusu virus in BALB/c mice: Descending infection and neuroinvasive virulence. Transboundary and Emerging Diseases, 2021, 68, 3529-3540.	1.3	17
75	An automated, field-compatible device for excito-repellency assays in mosquitoes. Journal of Vector Ecology, 2006, 31, 210-212.	0.5	16
76	Human-Landing Patterns of Anopheles dirussensu lato (Diptera: Culicidae) in Experimental Huts Treated With DDT or Deltamethrin. Journal of Medical Entomology, 2010, 47, 823-832.	0.9	16
77	Comparative Behavioral Responses of Pyrethroid-Susceptible and -Resistant <l>Aedes aegypti</l> (Diptera: Culicidae) Populations to Citronella and Eucalyptus Oils. Journal of Medical Entomology, 2014, 51, 1182-1191.	0.9	16
78	Diversity and biting patterns of Anopheles species in a malaria endemic area, Umphang Valley, Tak Province, western Thailand. Acta Tropica, 2019, 190, 183-192.	0.9	16
79	Behavioral responses to transfluthrin by Aedes aegypti, Anopheles minimus, Anopheles harrisoni, and Anopheles dirus (Diptera: Culicidae). PLoS ONE, 2020, 15, e0237353.	1.1	16
80	Behavioral responses to DDT and pyrethroids between Anopheles minimus species A and C, malaria vectors in Thailand. American Journal of Tropical Medicine and Hygiene, 2005, 73, 343-9.	0.6	16
81	Effects of Physiological Conditioning on Behavioral Avoidance by Using a Single Age Group of Aedes aegypti Exposed to Deltamethrin and DDT. Journal of Medical Entomology, 2008, 45, 251-259.	0.9	15
82	Seasonality and daily flight activity of stable flies (Diptera: Muscidae) on dairy farms in Saraburi Province, Thailand. Parasite, 2013, 20, 17.	0.8	15
83	Abundance and distribution of <i>i</i> >Anopheles <i>i</i> >mosquitoes in a malaria endemic area along the Thai-Lao border. Journal of Vector Ecology, 2017, 42, 325-334.	0.5	15
84	Rapid identification of the invasive fall armyworm Spodoptera frugiperda (Lepidoptera, Noctuidae) using species-specific primers in multiplex PCR. Scientific Reports, 2020, 10, 16508.	1.6	15
85	Effects of Physiological Conditioning on Behavioral Avoidance by Using a Single Age Group of <i>Aedes aegypti</i> Exposed to Deltamethrin and DDT. Journal of Medical Entomology, 2008, 45, 251-259.	0.9	14
86	An improved experimental hut design for the study of Aedes aegypti (Diptera: Culicidae) movement patterns in Thailand. Journal of Vector Ecology, 2010, 35, 428-431.	0.5	14
87	A High Throughput Screening System for Determining the Three Actions of Insecticides Against <i>Aedes aegypti</i> (Diptera: Culicidae) Populations in Thailand. Journal of Medical Entomology, 2010, 47, 833-841.	0.9	14
88	Influence of Time of Assay on Behavioral Responses of Laboratory and Field Populations <l>Aedes aegypti</l> and <l>Culex quinquefasciatus</l> (Diptera: Culicidae) to DEET. Journal of Medical Entomology, 2014, 51, 1227-1236.	0.9	14
89	Biting patterns and host preference of <i>Anopheles epiroticus</i> in Chang Island, Trat Province, eastern Thailand. Journal of Vector Ecology, 2014, 39, 361-371.	0.5	14
90	Evaluation of the Constituents of Vetiver Oil Against Anopheles minimus (Diptera: Culicidae), a Malaria Vector in Thailand. Journal of Medical Entomology, 2018, 55, 193-199.	0.9	14

#	Article	IF	CITATIONS
91	Behavioral Responses of Malaria Vectors, <i>Anopheles minimus</i> Complex, to Three Classes of Agrochemicals in Thailand. Journal of Medical Entomology, 2007, 44, 1032-1039.	0.9	13
92	Biting patterns of Anopheles minimus complex (Diptera: Culicidae) in experimental huts treated with DDT and deltamethrin. Journal of Vector Ecology, 2008, 33, 285-292.	0.5	13
93	Irritant and Repellent Responses of Anopheles harrisoni and Anopheles minimus upon Exposure to Bifenthrin or Deltamethrin Using an Excito-Repellency System and a Live Host. Journal of the American Mosquito Control Association, 2012, 28, 20-29.	0.2	13
94	Targeting educational campaigns for prevention of malaria and dengue fever: an assessment in Thailand. Parasites and Vectors, 2015, 8, 43.	1.0	13
95	Species diversity and abundance of Tabanus spp. (Diptera: Tabanidae) in different habitats of Thailand. Journal of Asia-Pacific Entomology, 2018, 21, 134-139.	0.4	13
96	Excito-repellency and biological safety of \hat{l}^2 -caryophyllene oxide against Aedes albopictus and Anopheles dirus (Diptera: Culicidae). Acta Tropica, 2020, 210, 105556.	0.9	13
97	Bacterial Microbiome in Wild-Caught Anopheles Mosquitoes in Western Thailand. Frontiers in Microbiology, 2020, 11, 965.	1.5	13
98	Discriminating Lethal Concentrations for Transfluthrin, a Volatile Pyrethroid Compound for Mosquito Control in Thailand. Journal of the American Mosquito Control Association, 2019, 35, 258-266.	0.2	13
99	Host feeding responses of Aedes aegypti (L.) exposed to deltamethrin. Journal of Vector Ecology, 2011, 36, 361-372.	0.5	12
100	Molecular Analysis of Forensically Important Blow Flies in Thailand. Insects, 2018, 9, 159.	1.0	12
101	The use of an experimental hut for evaluating the entering and exiting behavior of Aedes aegypti (Diptera: Culicidae), a primary vector of dengue in Thailand. Journal of Vector Ecology, 2005, 30, 344-6.	0.5	12
102	Human-Landing Patterns of <i>Anopheles dirus</i> sensu lato (Diptera: Culicidae) in Experimental Huts Treated With DDT or Deltamethrin. Journal of Medical Entomology, 2010, 47, 823-832.	0.9	11
103	Pyrethroid induced behavioral responses of Anopheles dirus, a vector of malaria in Thailand. Journal of Vector Ecology, 2012, 37, 187-196.	0.5	11
104	Insecticidal and Behavioral Avoidance Responses of Anopheles minimus and Culex quinquefasciatus (Diptera: Culicidae) to Three Synthetic Repellents. Journal of Medical Entomology, 2017, 54, 1312-1322.	0.9	11
105	Excito-repellency Activity of Andrographis paniculata (Lamiales: Acanthaceae) Against Colonized Mosquitoes. Journal of Medical Entomology, 2020, 57, 192-203.	0.9	11
106	Field Evaluation of a Spatial Repellent Emanation Vest for Personal Protection Against Outdoor Biting Mosquitoes. Journal of Medical Entomology, 2021, 58, 756-766.	0.9	11
107	Population Structure of <l>Stomoxys calcitrans</l> (Diptera: Muscidae) From Nine Regions of Thailand. Journal of Economic Entomology, 2010, 103, 1012-1018.	0.8	10
108	Dual exposure of Rickettsia typhiand Orientia tsutsugamushiin the field-collected Rattus rodents from Thailand. Journal of Vector Ecology, 2014, 39, 182-189.	0.5	10

#	Article	IF	CITATIONS
109	Predicting Geographic Distribution of Forensically Significant Blow Flies of Subfamily Chrysomyinae (Diptera: Calliphoridae) in Northern Thailand. Insects, 2018, 9, 106.	1.0	10
110	Enhanced mortality in deltamethrin-resistant Aedes aegypti in Thailand using a piperonyl butoxide synergist. Acta Tropica, 2019, 189, 76-83.	0.9	10
111	Detection of <i>Anaplasma</i> spp. and <i>Bartonella</i> spp. from wildâ€caught rodents and their ectoparasites in Nakhon Ratchasima Province, Thailand. Journal of Vector Ecology, 2020, 45, 241-253.	0.5	10
112	Allozyme Patterns of (i) Aedes albopictus (i), a Vector of Dengue in Thailand. Journal of Medical Entomology, 2004, 41, 657-663.	0.9	9
113	COMPARISON OF BLOOD FEEDING RESPONSE AND INFECTION OF AEDES AEGYPTI TO WUCHERERIA BANCROFTI USING ANIMAL MEMBRANES AND DIRECT HOST CONTACT. Journal of the American Mosquito Control Association, 2007, 23, 294-298.	0.2	9
114	Excito-Repellent Responses between Culex quinquefasciatus Permethrin Susceptible and Resistant Mosquitoes. Journal of Insect Behavior, 2016, 29, 415-431.	0.4	9
115	Excito-Repellency of <i>Citrus hystrix </i> DC Leaf and Peel Essential Oils Against <i>Aedes aegypti </i> and <i>Anopheles minimus </i> (Diptera: Culicidae), Vectors of Human Pathogens. Journal of Medical Entomology, 2017, 54, 178-186.	0.9	9
116	Pyrethroid susceptibility and behavioral avoidance in <i>Anopheles epiroticus</i> , a malaria vector in Thailand. Journal of Vector Ecology, 2014, 39, 32-43.	0.5	8
117	Behavioral responses of Anophelesspecies (Culicidae: Diptera) with varying surface exposure to pyrethroid-treated netting in an excito-repellency test system. Journal of Vector Ecology, 2016, 41, 254-264.	0.5	8
118	Field evaluation of a semi-automatic funnel trap targeted the medically important non-biting flies. Acta Tropica, 2017, 176, 68-77.	0.9	8
119	Species Composition and Abundance of Stomoxys spp. (Diptera: Muscidae) in Peninsular Thailand. Journal of Medical Entomology, 2020, 57, 252-258.	0.9	8
120	Genetic Structure and Gene Flow AmongAedes aegypti(Diptera: Culicidae) Populations from Central Thailand. Journal of Medical Entomology, 2005, 42, 604-609.	0.9	7
121	Genetic structure and gene flow of Anopheles minimus and Anopheles harrisoni in Kanchanaburi Province, Thailand. Journal of Vector Ecology, 2008, 33, 158-165.	0.5	7
122	Mitochondrial DNA-Based Identification of Forensically Important Flesh Flies (Diptera: Sarcophagidae) in Thailand. Insects, 2020, 11, 2.	1.0	7
123	Susceptibility of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to Temephos in Thailand and Surrounding Countries. Journal of Medical Entomology, 2020, 57, 1207-1220.	0.9	7
124	Effects of piperonyl butoxide synergism and cuticular thickening on the contact irritancy response of field <scp><i>Aedes aegypti</i></scp> (Diptera: Culicidae) to deltamethrin. Pest Management Science, 2021, 77, 5557-5565.	1.7	7
125	<i>Cananga odorata</i> (Magnoliales: Annonaceae) Essential Oil Produces Significant Avoidance Behavior in Mosquitoes. Journal of Medical Entomology, 2022, 59, 291-300.	0.9	7
126	Influence of Location and Distance of Biogents Sentinelâ, Traps From Human-Occupied Experimental Huts On Aedes aegypti Recapture and Entry Into Huts. Journal of the American Mosquito Control Association, 2018, 34, 201-209.	0.2	7

#	Article	IF	CITATIONS
127	Plasmodium Infections in Anopheles Mosquitoes in Ubon Ratchathani Province, Northeastern Thailand During a Malaria Outbreak. Journal of the American Mosquito Control Association, 2018, 34, 11-17.	0.2	7
128	Comparing Lightâ€"Emittingâ€"Diodes Light Traps for Catching Anopheles Mosquitoes in a Forest Setting, Western Thailand. Insects, 2021, 12, 1076.	1.0	7
129	Genetic Structure and Gene Flow Among <1>Aedes aegypti 1 (Diptera: Culicidae) Populations from Central Thailand. Journal of Medical Entomology, 2005, 42, 604-609.	0.9	6
130	Assessment of geraniol-incorporated polymers to control <i>Aedes albopictus</i> (Diptera: culicidae). Parasite, 2012, 19, 427-432.	0.8	6
131	Physical influence on larvicidal and pupicidal activity of the silicone-based monomolecular film. Acta Tropica, 2016, 162, 239-244.	0.9	6
132	Topical and spatial repellent bioassays against the Australian paralysis tick, Ixodes holocyclus (Acari:) Tj ETQq0 0	0 rgBT /C	Overlock 10 Tf
133	New records and DNA barcoding of deer flies, Chrysops (Diptera: Tabanidae) in Thailand. Acta Tropica, 2020, 210, 105532.	0.9	6
134	Dose–Response Assay for Synthetic Mosquito (Diptera: Culicidae) Attractant Using a High-Throughput Screening System. Insects, 2021, 12, 355.	1.0	6
135	Transmitted Light as Attractant with Mechanical Traps for Collecting Nocturnal Mosquitoes in Urban Bangkok, Thailand. Journal of the American Mosquito Control Association, 2021, 37, 132-142.	0.2	6
136	Interactions of duck Tembusu virus with Aedes aegypti and Aedes albopictus mosquitoes: Vector competence and viral mutation. Acta Tropica, 2021, 222, 106051.	0.9	6
137	Behavioral Responses of Mosquitoes to Insecticides. , 2012, , .		5
138	BG-Sentinelâ,,¢ Trap Efficacy As A Component of Proof-Of-Concept For Push–Pull Control Strategy For Dengue Vector Mosquitoes. Journal of the American Mosquito Control Association, 2017, 33, 293-300.	0.2	5
139	Diurnal test periods influence behavioral responses of Aedes aegypti (Diptera: Culicidae) to repellents. Journal of Asia-Pacific Entomology, 2018, 21, 971-983.	0.4	5
140	Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand. Parasites and Vectors, 2020, 13, 525.	1.0	5
141	Evaluation of Mosquito Attractant Candidates Using a High-Throughput Screening System for Aedes aegypti (L.), Culex quinquefasciatus Say. and Anopheles minimus Theobald (Diptera: Culicidae). Insects, 2021, 12, 528.	1.0	5
142	Genomic Shifts, Phenotypic Clines, and Fitness Costs Associated With Cold Tolerance in the Asian Tiger Mosquito. Molecular Biology and Evolution, 2022, 39, .	3.5	5
143	Locomotor Behavioral Responses of Anopheles minimus and Anopheles harrisoni to Alpha-Cypermethrin in Thailand. Journal of the American Mosquito Control Association, 2011, 27, 217-226.	0.2	4
144	Evaluation of a Noncontact, Alternative Mosquito Repellent Assay System. Journal of the American Mosquito Control Association, 2016, 32, 177-184.	0.2	4

#	Article	IF	Citations
145	Comparative Excito-Repellency of Three Cambodian Plant-Derived Extracts Against Two Mosquito Vector Species, <i>Aedes aegypti</i> Anopheles minimusJournal of the American Mosquito Control Association, 2016, 32, 185-193.	0.2	4
146	Molecular Identification of Four Members of the Anopheles dirus Complex Using the Mitochondrial Cytochrome C Oxidase Subunit I Gene. Journal of the American Mosquito Control Association, 2017, 33, 263-269.	0.2	4
147	Potential of attractive toxic sugar baits for controlling Musca domestica L., Drosophila melanogaster Meigen, and Megaselia scalaris Loew adult flies. Agriculture and Natural Resources, 2018, 52, 393-398.	0.4	4
148	Discriminating lethal concentrations for pyrethroid compounds used in susceptibility monitoring of Anopheles epiroticus, a malaria vector in Thailand. Acta Tropica, 2018, 185, 255-260.	0.9	4
149	Stomoxyinae Flies in Thailand: A Précis, with Abridged Taxonomic Key to the Adult Species. Vector-Borne and Zoonotic Diseases, 2019, 19, 385-394.	0.6	4
150	Repellency and Contact Irritancy Responses of Aedes aegypti (Diptera: Culicidae) Against Deltamethrin and Permethrin: A Cross-Regional Comparison. Journal of Medical Entomology, 2020, 58, 379-389.	0.9	4
151	Enhanced Excito-Repellency of Binary Mixtures of Plant-Based Mosquito Repellents Against Culex quinquefasciatus Say (Diptera: Culicidae), a Night Biting Mosquito Species. Journal of Medical Entomology, 2022, , .	0.9	4
152	Bacterial Biodiversity in Midguts of Anopheles Mosquitoes, Malaria Vectors in Southeast Asia. , 0, , .		3
153	Spatial Distribution of Forensically Significant Blow Flies in Subfamily Lucilinae (Diptera:) Tj ETQq1 1 0.784314 rg Insects, 2018, 9, 181.	BT /Overl 1.0	ock 10 Tf 50 3
154	Optimal Discriminating Concentrations of Six Synthetic Pyrethroids for Monitoring Insecticide Susceptibility in Anopheles minimus (Diptera: Culicidae), a Primary Malaria Vector in Thailand. Journal of Economic Entomology, 2018, 111, 2375-2382.	0.8	3
155	Guidelines for user-friendly iconographic description of hematophagous flies' external morphology; application to the identification of Tabanus rubidus (Wiedemann, 1821) (Diptera: Tabanidae). Journal of Asia-Pacific Entomology, 2018, 21, 807-822.	0.4	3
156	Molecular identification of native Wolbachia pipientis in Anopheles minimus in a low-malaria transmission area of Umphang Valley along the Thailand-Myanmar border. Parasites and Vectors, 2020, 13, 579.	1.0	3
157	Behavioral Action of Deltamethrin and Cypermethrin in Pyrethroid-Resistant Aedes aegypti (Diptera:) Tj ETQq1 10).784314 0.9	rgBT /Over
158	The Efficacy of Ultrasonic Pest Repellent Devices against the Australian Paralysis Tick, Ixodes holocyclus (Acari: Ixodidae). Insects, 2021, 12, 400.	1.0	3
159	Trophic Behavior and Species Diversity of the <i>Anopheles barbirostris</i> Complex (Diptera:) Tj ETQq1 1 0.784	314.rgBT / 0.9	Ogerlock 10
160	Daily and Seasonal Prevalence of the Blow Fly Chrysomya Rufifacies (Diptera: Calliphoridae) as Revealed by Semiautomatic Trap Collections in Suburban Chiang Mai Province, Northern Thailand. Florida Entomologist, 2018, 101, 617.	0.2	3
161	A Review of Termite Species and Their Distribution in Thailand. Insects, 2022, 13, 186.	1.0	3
162	Scientific achievements and reflections after 20Âyears of vector biology and control research at the Pu Teuy mosquito field research station, Thailand. Malaria Journal, 2022, 21, 44.	0.8	3

#	Article	IF	CITATIONS
163	Semi-field evaluation of novel chemical lures for Aedes aegypti, Culex quinquefasciatus, and Anopheles minimus (Diptera: Culicidae) in Thailand. Parasites and Vectors, 2021, 14, 606.	1.0	3
164	Excito-repellency of <i>Myristica fragrans</i> Houtt. and <i>Curcuma longa</i> L. extracts from Southern Thailand against <i>Aedes aegypti</i> (L.). PeerJ, 2022, 10, e13357.	0.9	3
165	Toxicity and persistence of permethrinâ€impregnated clothing against the Australian paralysis tick, <i>lxodes holocyclus</i> (Acari: Ixodidae). Austral Entomology, 2020, 59, 845-851.	0.8	2
166	Report of the 2018 annual meeting of the Asia Pacific Malaria Elimination Network Vector Control Working Group: harnessing skills and knowledge for malaria elimination across the Asia Pacific. Parasites and Vectors, 2021, 14, 290.	1.0	2
167	Forced Egg Laying Method to Establish F1 Progeny from Field Populations and Laboratory Strains of <i>Anopheles</i> Mosquitoes (Diptera: Culicidae) in Thailand. Journal of Medical Entomology, 2021, 58, 2107-2113.	0.9	2
168	Genetic Structure Among Thai Populations of Aedes aegypti Mosquitoes. Journal of Vector Ecology, 2009, 34, 43-49.	0.5	2
169	Genetic differentiation of Aedes aegypti mainland and island populations from southern Thailand. Journal of the American Mosquito Control Association, 2002, 18, 173-7.	0.2	2
170	Biting Activity and Host Preference of the Malaria Vectors <i>Anopheles maculatus</i> Anopheles sawadwongporni(Diptera: Culicidae) in Thailand. Journal of Vector Ecology, 2009, 34, 62-69.	0.5	1
171	Comparison of a novel high-throughput screening system with the Bottle assay for evaluating insecticide toxicity. Journal of Pesticide Sciences, 2009, 34, 283-286.	0.8	1
172	Phylogenetic Relationships Among Malaria Vectors and Closely Related Species in Thailand Using Multilocus DNA Sequences. Journal of the American Mosquito Control Association, 2017, 33, 91-102.	0.2	1
173	Genetic variation of Aedes aegypti mosquitoes across Thailand based on nuclear DNA sequences. Agriculture and Natural Resources, 2018, 52, 596-602.	0.4	1
174	Daily and seasonal variation of muscid flies (Diptera: Muscidae) in Chiang Mai province, northern Thailand. Acta Tropica, 2020, 204, 105348.	0.9	1
175	Time of Test Periods Influence the Behavioral Responses of Anopheles minimus and Anopheles dirus (Diptera: Culicidae) to DEET. Insects, 2021, 12, 867.	1.0	1
176	Ultrastructure of male terminalia of Boettcherisca peregrina and Boettcherisca nathani (Diptera:) Tj ETQq0 0 0 0	rgBT/Qver	ock 10 Tf 50 :
177	Irritability and Repellency of Synthetic Pyrethroids on anAedes aegyptiPopulation from Thailand. Journal of Vector Ecology, 2009, 34, 217-224.	0.5	1
178	Effects of Environmental Conditions on the Movement Patterns of Aedes aegypti (Diptera: Culicidae) into and Out of Experimental Huts in Thailand. Journal of Vector Ecology, 2009, 34, 267-275.	0.5	0
179	Avoidance Behavior to Guava Leaf Volatile Oil by Three Medically Important Mosquito Vectors. Journal of Economic Entomology, 2021, 114, 2534-2542.	0.8	0
180	Effect of Different Wall Surface Coverage With Deltamethrin-Treated Netting on the Reduction of Indoor-Biting <i>Anopheles</i> Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 2021, 58, 2299-2307.	0.9	0