Manuel BlÃ;zquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5918228/publications.pdf

Version: 2024-02-01

88 papers

1,417 citations

23 h-index 32 g-index

88 all docs 88 docs citations

88 times ranked 1403 citing authors

#	Article	IF	CITATIONS
1	Electrochemical evaluation of the grafting density of self-assembled monolayers of polyethylene glycol of different chain lengths formed by the grafting to approach under conditions close to the cloud point. Journal of Electroanalytical Chemistry, 2022, , 116294.	1.9	3
2	Self-assembled monolayers of O-(2-Mercaptoethyl)-O′-methyl-hexa(ethylene glycol) (EG7-SAM) on gold electrodes. Effects of the nature of solution/electrolyte on formation and electron transfer blocking characteristics. Journal of Electroanalytical Chemistry, 2022, 914, 116303.	1.9	3
3	Characterization of self-assembled Bis[2-(2-bromoisobutyryloxy) undecyl] disulphide (DTBU) on gold surfaces suitable for use in surface-initiated atom transfer radical polymerization (SI-ATRP). Journal of Electroanalytical Chemistry, 2022, 918, 116515.	1.9	1
4	Distinct thermoresponsive behaviour of oligo- and poly-ethylene glycol protected gold nanoparticles in concentrated salt solutions. Nanoscale Advances, 2021, 3, 4767-4779.	2.2	5
5	Characterization of a self-assembled monolayer of O-(2-Mercaptoethyl)-O′-methyl-hexa(ethylene) Tj ETQq1 1 0.	.784314 rg	gBT /Over oc
6	Effective replacement of cetyltrimethylammonium bromide (CTAB) by mercaptoalkanoic acids on gold nanorod (AuNR) surfaces in aqueous solutions. Nanoscale, 2020, 12, 658-668.	2.8	39
7	A study on the electrooxidation of vitamin B6 compounds on glassy carbon and polycrystalline gold electrodes. Journal of Electroanalytical Chemistry, 2020, 877, 114525.	1.9	3
8	Influence of Patterning in the Acid–Base Interfacial Properties of Homogeneously Mixed CH ₃ - and COOH-Terminated Self-Assembled Monolayers. Journal of Physical Chemistry C, 2018, 122, 2854-2865.	1.5	14
9	Hemoglobin becomes electroactive upon interaction with surface-protected Au nanoparticles. Talanta, 2018, 176, 667-673.	2.9	13
10	Electrocatalytic performance enhanced of the electrooxidation of gamma-hydroxybutyric acid (GHB) and ethanol on platinum nanoparticles surface. A contribution to the analytical determination of GHB in the presence of ethanol. Sensors and Actuators B: Chemical, 2018, 256, 553-563.	4.0	8
11	Study of the self-assembly process of an oligo(ethylene glycol)-thioacetyl substituted theophylline (THEO) on gold substrates. Journal of Electroanalytical Chemistry, 2018, 823, 663-671.	1.9	5
12	Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties. Journal of Colloid and Interface Science, 2017, 505, 1165-1171.	5.0	29
13	Temperature Effect on the Electrooxidation of Gamma Hydroxybutyric Acid (GHB) on Platinum Catalyst through Cyclic Voltammetry, Chronoamperometry, Impedance Spectroscopy and SERS Spectroelectrochemistry. International Journal of Electrochemical Science, 2016, , 10473-10487.	0.5	2
14	Comparative study of \hat{I}^3 -hidroxybutiric acid (GHB) and other derivative compounds by spectroelectrochemistry raman (SERS) on platinum surface. Electrochimica Acta, 2016, 193, 154-159.	2.6	7
15	Formation of 2-D Crystalline Intermixed Domains at the Molecular Level in Binary Self-Assembled Monolayers from a Lyotropic Mixture. Journal of Physical Chemistry C, 2016, 120, 8595-8606.	1.5	7
16	Study of the electro-oxidation of a recreational drug GHB (gamma hydroxybutyric acid) on a platinum catalyst-type electrode through chronoamperometry and spectro-electrochemistry. Journal of Electroanalytical Chemistry, 2016, 766, 141-146.	1.9	9
17	Influence of the Global Charge of the Protein on the Stability of Lysozyme–AuNP Bioconjugates. Journal of Physical Chemistry C, 2014, 118, 22274-22283.	1.5	15
18	Electrochemical and AFM Study of the 2D-Assembly of Colloidal Gold Nanoparticles on Dithiol SAMs Tuned by Ionic Strength. Journal of Physical Chemistry C, 2014, 118, 14617-14628.	1.5	11

#	Article	IF	CITATIONS
19	Formation of Mixed Monolayers from 11-Mercaptoundecanoic Acid and Octanethiol on Au(111) Single Crystal Electrode under Electrochemical Control. Journal of Physical Chemistry C, 2013, 117, 24307-24316.	1.5	14
20	Electrochemical behaviour of gamma hydroxybutyric acid at a platinum electrode in acidic medium. Electrochimica Acta, 2013, 111, 601-607.	2.6	10
21	Role of the Functionalization of the Gold Nanoparticle Surface on the Formation of Bioconjugates with Human Serum Albumin. Journal of Physical Chemistry C, 2012, 116, 10430-10437.	1.5	74
22	A comparative study of the electrochemical properties of vitamin B-6 related compounds at physiological pH. Russian Journal of Electrochemistry, 2011, 47, 835-845.	0.3	8
23	Electrochemical Behaviour of Carbamazepine in Acetonitrile and Dimethylformamide Using Glassy Carbon Electrodes and Microelectrodes. Electroanalysis, 2010, 22, 2961-2966.	1.5	24
24	Formation of 1,8-Octanedithiol Mono- and Bilayers under Electrochemical Control. Journal of Physical Chemistry C, 2010, 114, 3568-3574.	1.5	25
25	3D Gold Nanocrystal Arrays: A Framework for Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 2360-2364.	1.5	5
26	A Molecular Dynamics Study of the Surfactant Surface Density of Alkanethiol Self-Assembled Monolayers on Gold Nanoparticles as a Function of the Radius. Journal of Physical Chemistry C, 2010, 114, 21309-21314.	1.5	50
27	Facile Exchange of Ligands on the 6-Mercaptopurine-Monolayer Protected Gold Clusters Surface. Journal of Physical Chemistry C, 2010, 114, 15955-15962.	1.5	25
28	Formation of a 1,8-Octanedithiol Self-Assembled Monolayer on Au(111) Prepared in a Lyotropic Liquid-Crystalline Medium. Langmuir, 2010, 26, 11790-11796.	1.6	22
29	Synthesis, Characterization, and Double Layer Capacitance Charging of Nanoclusters Protected by 6-Mercaptopurine. Journal of Physical Chemistry C, 2009, 113, 5186-5192.	1.5	20
30	Electrochemistry of Molecule-like Au25Nanoclusters Protected by Hexanethiolate. Journal of Physical Chemistry C, 2009, 113, 8756-8761.	1.5	44
31	Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(111) single crystal electrode. Electrochimica Acta, 2008, 53, 8026-8033.	2.6	46
32	Influence of the Solution pH in the 6-Mercaptopurine Self-Assembled Monolayer (6MP-SAM) on a Au(111) Single-Crystal Electrode. Langmuir, 2007, 23, 11027-11033.	1.6	22
33	Stabilization of Gold Nanoparticles by 6-Mercaptopurine Monolayers. Effects of the Solvent Properties. Journal of Physical Chemistry B, 2006, 110, 17840-17847.	1.2	56
34	The kinetics of the dissolution of 6-mercaptopurine self-assembled monolayers on Au(111) and Hg electrodes. Journal of Electroanalytical Chemistry, 2005, 576, 197-203.	1.9	12
35	Formation and Dissolution Processes of the 6-Thioguanine (6TG) Self-Assembled Monolayer. A Kinetic Study. Journal of Physical Chemistry B, 2005, 109, 1491-1498.	1.2	7
36	An electrochemical study of 6-thioguanine monolayers on a mercury electrode in acid and neutral solutions. Journal of Electroanalytical Chemistry, 2004, 565, 301-310.	1.9	21

#	Article	IF	CITATIONS
37	An Electrochemical Study of the SAMs of 6-Mercaptopurine (6MP) at Hg and Au(111) Electrodes in Alkaline Media. Langmuir, 2002, 18, 3903-3909.	1.6	26
38	A voltammetric study of 6-mercaptopurine monolayers on polycrystalline gold electrodes. Journal of Electroanalytical Chemistry, 2001, 506, 92-98.	1.9	45
39	A study on maxima and inverted peaks in cyclic voltammetry. Electrochemical reduction of pyridine-4-aldoxime at an HMDE. Journal of Electroanalytical Chemistry, 2001, 517, 15-19.	1.9	6
40	A voltammetric study of pyridine-4-aldoxime (PA) at a glassy carbon electrode Error! Reference source not found.in dimethylformamide. Journal of Electroanalytical Chemistry, 2000, 485, 1-6.	1.9	3
41	Electrooxidation of pyridoxal (PL) on a polycrystalline gold electrode in alkaline solutions. Journal of Electroanalytical Chemistry, 2000, 492, 38-45.	1.9	12
42	Characterization of 6-mercaptopurine monolayers on Hg surfaces. Journal of Electroanalytical Chemistry, 1998, 442, 107-112.	1.9	27
43	The direct electrochemistry of cytochrome c at a hanging mercury drop electrode modified with 6-mercaptopurine. Journal of Electroanalytical Chemistry, 1998, 451, 89-93.	1.9	30
44	Modification of metal substrates and its application to the study of redox proteins. Progress in Biotechnology, 1998, , 697-702.	0.2	0
45	Electrochemical evidence on the molten globule conformation of cytochrome c. BBA - Proteins and Proteomics, 1997, 1343, 227-234.	2.1	23
46	Voltammetry of polyprotic acids at platinum microelectrodes: reduction of pyridoxal-5′-phosphate. Journal of Electroanalytical Chemistry, 1997, 428, 91-95.	1.9	9
47	Electrochemical reduction of the final product of vitamin B-6 catabolism: a spectroscopic characterization of the reduced products of 4-pyridoxic acid. Journal of Electroanalytical Chemistry, 1996, 403, 101-107.	1.9	9
48	A contribution to the electrode reaction of oximes: a study of the intermediate imine on the electroreduction of pyridine-4-aldoxime. Journal of Electroanalytical Chemistry, 1996, 410, 15-20.	1.9	8
49	Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5?-phosphate withl-isoleucine in aqueous solutions. Journal of Fluorescence, 1996, 6, 1-6.	1.3	13
50	Electroreduction of the Schiff base of pyridoxal-5′-phosphate and hexylamine in dimethylformamide and methanol. Effect of the self-protonation. Journal of Electroanalytical Chemistry, 1995, 381, 179-183.	1.9	8
51	Spectroscopic properties of the photoproducts of pyridoxal-5′-P irradiation: Catalytic site recognition of ribonuclease A. Journal of Fluorescence, 1994, 4, 179-186.	1.3	1
52	Enolimine and geminaldiamine forms in the reaction of pyridoxal phosphate with ethylenediamine. An electrochemical and spectroscopic contribution. Journal of Physical Organic Chemistry, 1994, 7, 227-233.	0.9	6
53	On the electrochemical study of an enzymatic model reaction. Electroanalysis, 1994, 6, 1119-1125.	1.5	0
54	An electrochemical contribution to the study of catalytic transimination: Schiff base of pyridoxal phosphate with ethylamine and ethylenediamine. Journal of Electroanalytical Chemistry, 1994, 364, 199-207.	1.9	1

#	Article	IF	Citations
55	Luminescence spectroscopy of pyridoxic acid and pyridoxic acid bound to proteins. FEBS Journal, 1994, 219, 807-812.	0.2	7
56	Electrochemical and Spectrophotometric Study of the Reactions of L-Leucine with Pyridoxal and Pyridoxal Phosphate. Collection of Czechoslovak Chemical Communications, 1994, 59, 768-781.	1.0	0
57	Nitro radical anion formation from nimodipine. Journal of Electroanalytical Chemistry, 1993, 345, 121-133.	1.9	38
58	A study of the Schiff base formed between pyridoxal-5′-phosphate and poly-L-lysine of low polymerization degree. Journal of the Chemical Society Perkin Transactions II, 1992, , 921-926.	0.9	6
59	Schiff bases of pyridoxal 5′-phosphate and polypeptides containing L-lysine: A kinetic study. Journal of Molecular Catalysis, 1991, 68, 379-386.	1.2	17
60	Reaction between pyridoxal and hexylamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 304, 53-60.	0.3	7
61	Cyclic voltammetric study of the nitro radical anion from nitrendipine generated electrochemically. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 319, 177-184.	0.3	28
62	The schiff base between pyridoxal-5′-phosphate (PLP) and hexylamine. Formation of the unprotonated form of the imine by reaction of the unprotonated PLP and free amine. Journal of Physical Organic Chemistry, 1991, 4, 372-380.	0.9	4
63	Hydration of the pyridoxal-5'-phosphate. An electrochemical study. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1991, 88, 371-376.	0.2	2
64	Polarographic and spectrophotometric behaviour of some N-p-phenyl substituted benzamidines. Collection of Czechoslovak Chemical Communications, 1991, 56, 2791-2799.	1.0	1
65	Electrochemical behaviour of the schiff base from pyridine-4-aldehyde and n-hexylamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 280, 105-118.	0.3	7
66	Electrochemical behaviour of the Schiff base from pyridoxal-5'-phosphate and L-alanine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 294, 179-192.	0.3	12
67	Resolution of absorption spectra. Computers & Chemistry, 1989, 13, 197-200.	1.2	35
68	Electrochemical behaviour of pyridoxal-5'-phosphate. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 266, 357-365.	0.3	9
69	Binding of pyridoxal-5?-phosphate and pyridoxamine-5?-phosphate: Electrochemical characterization. Journal of Physical Organic Chemistry, 1989, 2, 448-454.	0.9	7
70	The Schiff base between pyridoxal-5′-phosphate and hexylamine. Equilibria in solution. Journal of the Chemical Society Perkin Transactions II, 1989, , 1229-1236.	0.9	18
71	A polarographic study of the schiff bases of pyridoxal-5'-phosphate. Influence of the amine protonation equilibrium on the stability. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1989, 86, 1143-1153.	0.2	12
72	Electrochemical behaviour of pyrazine derivatives: reduction of 2-hydroxy-3-phenyl-6-methylpyrazine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 243, 133-142.	0.3	13

#	Article	IF	CITATIONS
73	A curve-fitting program set for handling of differential pulse polarograms. Computers & Chemistry, 1988, 12, 257-266.	1.2	25
74	Global analysis of kinetic current in DC polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 243, 309-320.	0.3	10
75	Some aspects on the role of proton donors in the electrochemical reduction of dicarbonyl compounds. Electrochimica Acta, 1986, 31, 1473-1475.	2.6	7
76	Electrochemical behaviour of pyridoxal-5′-phosphate Schiff base with n-hexylamine. Bioelectrochemistry, 1986, 16, 317-324.	1.0	19
77	Hydration-dehydration of the electroactive group on the electrochemical behaviour of pyridoxal- $5\hat{a}\in^2$ -phosphate. Bioelectrochemistry, 1986, 16, 325-331.	1.0	9
78	Derivation and experimental verification of approximate explicit equations in differential pulse polarography Part II. Second-order processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 201, 237-246.	0.3	32
79	Diagnostic criteria for characterization of mechanisms corresponding to the second reduction polarographic wave of carbonyl compounds in acidic medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 189, 195-202.	0.3	15
80	Electrochemical reduction of tricarbonyl compounds. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 185, 119-130.	0.3	7
81	Derivation and experimental verification of approximate explicit equations in differential pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 195, 263-270.	0.3	66
82	Systematic errors in the calculation of kinetic parameters by the polarographic method. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 190, 47-54.	0.3	24
83	EC mechanisms: electrodimerization of benzophenone on mercury electrode. Electrochimica Acta, 1985, 30, 1527-1532.	2.6	12
84	Reduction of dicarbonyl compounds on a DME. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 195, 363-374.	0.3	10
85	Eletrochemical behaviour of pyridoxal 5′-phosphate in an acid medium on a mercury electrode. Bioelectrochemistry, 1984, 12, 25-35.	1.0	11
86	Diagnostic criteria for characterization of CE and CEC mechanisms in polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 172, 173-179.	0.3	28
87	Influence of proton-donors on the reduction mechanism of diacetyl on dme. Electrochimica Acta, 1984, 29, 429-431.	2.6	8
88	Reduction of dicarbonyl compounds on a mercury electrode—I. Reduction mechanism of diacetyl. Electrochimica Acta, 1982, 27, 1369-1372.	2.6	15