Lucie ObalovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5918211/publications.pdf

Version: 2024-02-01

172457 175258 2,937 80 29 52 citations h-index g-index papers 81 81 81 3025 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2009, 89, 494-502.	20.2	460
2	Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2010, 96, 239-244.	20.2	314
3	Photocatalytic reduction of CO2 over TiO2 based catalysts. Chemical Papers, 2008, 62, 1-9.	2.2	165
4	Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties. Journal of Solid State Chemistry, 2006, 179, 812-823.	2.9	116
5	Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catalysis Today, 2011, 161, 105-109.	4.4	100
6	Effect of hydrothermal treatment on properties of Ni–Al layered double hydroxides and related mixed oxides. Journal of Solid State Chemistry, 2009, 182, 27-36.	2.9	92
7	Effect of potassium in calcined Co–Mn–Al layered double hydroxide on the catalytic decomposition of N2O. Applied Catalysis B: Environmental, 2009, 90, 132-140.	20.2	83
8	Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds. Applied Catalysis B: Environmental, 2005, 60, 289-297.	20.2	75
9	Effect of Mn/Al ratio in Co–Mn–Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O. Catalysis Today, 2007, 119, 233-238.	4.4	73
10	Effect of promoters in Co–Mn–Al mixed oxide catalyst on N2O decomposition. Chemical Engineering Journal, 2010, 160, 480-487.	12.7	72
11	Effect of precursor synthesis on catalytic activity of Co3O4 in N2O decomposition. Catalysis Today, 2015, 257, 18-25.	4.4	71
12	Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Applied Catalysis B: Environmental, 2015, 178, 108-116.	20.2	63
13	Alkali metals as promoters in Co–Mn–Al mixed oxide for N2O decomposition. Applied Catalysis A: General, 2013, 462-463, 227-235.	4.3	62
14	Kinetic analysis of N2O decomposition over calcined hydrotalcites. Applied Catalysis B: Environmental, 2007, 70, 353-359.	20.2	53
15	Structure–activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors. Journal of Molecular Catalysis A, 2006, 248, 210-219.	4.8	52
16	Catalytic decomposition and reduction of N2O over micro-mesoporous materials containing Beta zeolite nanoparticles. Applied Catalysis B: Environmental, 2014, 146, 112-122.	20.2	50
17	Wavelength Effect on Photocatalytic Reduction of CO2 by Ag/TiO2 Catalyst. Chinese Journal of Catalysis, 2011, 32, 812-815.	14.0	47
18	Electronic nature of potassium promotion effect in Coâ€"Mnâ€"Al mixed oxide on the catalytic decomposition of N2O. Catalysis Communications, 2011, 12, 1055-1058.	3.3	42

#	Article	IF	Citations
19	Effect of Temperature, Pressure and Volume of Reacting Phase on Photocatalytic CO2 Reduction on Suspended Nanocrystalline TiO2. Collection of Czechoslovak Chemical Communications, 2008, 73, 1192-1204.	1.0	41
20	Influence of reactor geometry on the yield of CO2 photocatalytic reduction. Catalysis Today, 2011, 176, 212-214.	4.4	41
21	Sol–gel derived Pd supported TiO2-ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide. Catalysis Today, 2014, 230, 20-26.	4.4	38
22	On sol–gel derived Au-enriched TiO2 and TiO2-ZrO2 photocatalysts and their investigation in photocatalytic reduction of carbon dioxide. Applied Surface Science, 2013, 285, 688-696.	6.1	37
23	Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films. Catalysis Today, 2013, 209, 170-175.	4.4	36
24	TiO2 Processed by pressurized hot solvents as a novel photocatalyst for photocatalytic reduction of carbon dioxide. Applied Surface Science, 2017, 391, 282-287.	6.1	36
25	Photocatalytic H2 generation from aqueous ammonia solution using ZnO photocatalysts prepared by different methods. International Journal of Hydrogen Energy, 2015, 40, 8530-8538.	7.1	34
26	Effect of preparation method on catalytic properties of Co-Mn-Al mixed oxides for N2O decomposition. Journal of Molecular Catalysis A, 2016, 425, 237-247.	4.8	31
27	Activated Carbons Prepared from a Broad Range of Residual Agricultural Biomasses Tested for Xylene Abatement in the Gas Phase. ACS Sustainable Chemistry and Engineering, 2017, 5, 2368-2374.	6.7	31
28	Photocatalytic decomposition of N2O on Ag-TiO2. Catalysis Today, 2012, 191, 134-137.	4.4	30
29	Cobalt mixed oxides deposited on the SiC open-cell foams for nitrous oxide decomposition. Applied Catalysis B: Environmental, 2019, 255, 117745.	20.2	30
30	Catalytic reduction of nitrous oxide with carbon monoxide over calcined Co–Mn–Al hydrotalcite. Catalysis Today, 2008, 137, 385-389.	4.4	22
31	Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4. Catalysis Today, 2015, 257, 2-10.	4.4	22
32	On the stability of alkali metal promoters in Co mixed oxides during direct NO catalytic decomposition. Molecular Catalysis, 2017, 428, 33-40.	2.0	22
33	Effect of calcination temperature and calcination time on the kaolinite/tio2 composite for photocatalytic reduction of CO2. GeoScience Engineering, 2012, 58, 10-22.	0.3	21
34	Photocatalytic and photochemical decomposition of N2O on ZnS-MMT catalyst. Catalysis Today, 2014, 230, 61-66.	4.4	20
35	N2O catalytic decomposition and temperature programmed desorption tests on alkali metals promoted Co–Mn–Al mixed oxide. Catalysis Today, 2011, 176, 208-211.	4.4	19
36	N2O catalytic decomposition – From laboratory experiment to industry reactor. Catalysis Today, 2012, 191, 116-120.	4.4	18

#	Article	IF	Citations
37	Co-Mn-Al Mixed Oxides Promoted by K for Direct NO Decomposition: Effect of Preparation Parameters. Catalysts, 2019, 9, 593.	3.5	18
38	Effect of support on the catalytic activity of Co3O4-Cs deposited on open-cell ceramic foams for N2O decomposition. Materials Research Bulletin, 2020, 129, 110892.	5.2	18
39	Cobalt Oxides Supported Over Ceria–Zirconia Coated Cordierite Monoliths as Catalysts for Deep Oxidation of Ethanol and N2O Decomposition. Catalysis Letters, 2017, 147, 1379-1391.	2.6	17
40	Influence of Reaction Medium on CO2 Photocatalytic Reduction Yields Over Zns-MMT / Vliv ReakÄnÃho ProstÅ™enÃ-Na VýtIJžky Fotokatalytické Redukce CO2 V PÅ™Ãŧomnosti Zns-MMT. GeoScience Engineeri 58, 34-42.	n g ,32012,	16
41	Photocatalytic reactions of nanocomposite of ZnS nanoparticles and montmorillonite. Applied Surface Science, 2013, 275, 369-373.	6.1	16
42	Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O. Journal of Sol-Gel Science and Technology, 2016, 78, 550-558.	2.4	15
43	TiO ₂ and Nitrogen Doped TiO ₂ Prepared by Different Methods; on the (Micro)structure and Photocatalytic Activity in CO ₂ Reduction and N ₂ Decomposition. Journal of Nanoscience and Nanotechnology, 2018, 18, 688-698.	0.9	14
44	Cu-Mg-Fe-O-(Ce) Complex Oxides as Catalysts of Selective Catalytic Oxidation of Ammonia to Dinitrogen (NH3-SCO). Catalysts, 2020, 10, 153.	3.5	14
45	An investigation on the N2O decomposition activity of Mn Co1â^Co2O4 nanorods prepared by the thermal decomposition of their oxalate precursors. Journal of Industrial and Engineering Chemistry, 2021, 93, 279-289.	5.8	14
46	K-Doped Co–Mn–Al Mixed Oxide Catalyst for N ₂ O Abatement from Nitric Acid Plant Waste Gases: Pilot Plant Studies. Industrial & Damp; Engineering Chemistry Research, 2016, 55, 7076-7084.	3.7	14
47	Preparation, characterization and photocatalytic performance of TiO2 prepared by using pressurized fluids in CO2 reduction and N2O decomposition. Journal of Sol-Gel Science and Technology, 2015, 76, 621-629.	2.4	13
48	Catalytic activity of cobalt grafted on ordered mesoporous silica materials in N2O decomposition and CO oxidation. Molecular Catalysis, 2017, 437, 57-72.	2.0	13
49	N2O catalytic decomposition $\hat{a}\in$ " effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chemical Papers, 2009, 63, .	2.2	12
50	Simulation of N2O Abatement in Waste Gases by Its Decomposition over a K-Promoted Co-Mn-Al Mixed Oxide Catalyst. Chinese Journal of Catalysis, 2011, 32, 816-820.	14.0	12
51	Supported Co–Mn–Al mixed oxides as catalysts for N2O decomposition. Comptes Rendus Chimie, 2015, 18, 1114-1122.	0.5	12
52	Co–Mn–Al mixed oxides as catalysts for ammonia oxidation to N2O. Research on Chemical Intermediates, 2016, 42, 2669-2690.	2.7	12
53	Catalytic activity of rhodium grafted on ordered mesoporous silica materials modified with aluminum in N2O decomposition. Catalysis Today, 2015, 257, 51-58.	4.4	11
54	Microstructure-performance study of cerium-doped TiO2 prepared by using pressurized fluids in photocatalytic mitigation of N2O. Research on Chemical Intermediates, 2015, 41, 9217-9231.	2.7	11

#	Article	IF	CITATIONS
55	K-Modified Co–Mn–Al Mixed Oxide—Effect of Calcination Temperature on N2O Conversion in the Presence of H2O and NOx. Catalysts, 2020, 10, 1134.	3.5	11
56	A comparative study of TiO2-supported and bulk Co–Mn–Al catalysts for N2O decomposition. Catalysis Today, 2012, 191, 112-115.	4.4	10
57	Titania supported Co–Mn–Al oxide catalysts in total oxidation of ethanol. Catalysis Today, 2012, 179, 164-169.	4.4	10
58	Advantage of the single pellet string reactor for testing real-size industrial pellets of potassium-doped CoMnAl catalyst forÂthe decompositionÂof N2O. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 651-662.	1.7	10
59	Precipitated K-Promoted Co–Mn–Al Mixed Oxides for Direct NO Decomposition: Preparation and Properties. Catalysts, 2019, 9, 592.	3.5	10
60	Role of the Cu content and Ce activating effect on catalytic performance of Cu-Mg-Al and Ce/Cu-Mg-Al oxides in ammonia selective catalytic oxidation. Applied Surface Science, 2022, 573, 151540.	6.1	10
61	Titanium and zirconium-based mixed oxides prepared by using pressurized and supercritical fluids: On novel preparation, microstructure and photocatalytic properties in the photocatalytic reduction of CO2. Catalysis Today, 2017, 287, 52-58.	4.4	9
62	Magnesium Effect in K/Co-Mg-Mn-Al Mixed Oxide Catalyst for Direct NO Decomposition. Catalysts, 2020, 10, 931.	3.5	9
63	Reaction mechanism of NO direct decomposition over K-promoted Co-Mn-Al mixed oxides – DRIFTS, TPD and transient state studies. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 257-266.	5.3	9
64	Molecular Dimensions and Porous Structure of Activated Carbons for Sorption of Xylene and Isooctane. Chemical Engineering and Technology, 2017, 40, 6-17.	1.5	8
65	Cobalt oxide catalysts supported on CeO2–TiO2 for ethanol oxidation and N2O decomposition. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 121-139.	1.7	7
66	Must the Best Laboratory Prepared Catalyst Also Be the Best in an Operational Application?. Catalysts, 2019, 9, 160.	3.5	7
67	Antibacterial, Antifungal and Ecotoxic Effects of Ammonium and Imidazolium Ionic Liquids Synthesized in Microwaves. Molecules, 2020, 25, 5181.	3.8	7
68	Catalytic Oxidation of Ammonia over Cerium-Modified Copper Aluminium Zinc Mixed Oxides. Materials, 2021, 14, 6581.	2.9	6
69	Optimization of Cs content in Co–Mn–Al mixed oxide as catalyst for N2O decomposition. Research on Chemical Intermediates, 2015, 41, 9319-9332.	2.7	5
70	Magnetically modified nanogold-biosilica composite as an effective catalyst for CO oxidation. Arabian Journal of Chemistry, 2019, 12, 1148-1158.	4.9	5
71	Application of Calcined Layered Double Hydroxides as Catalysts for Abatement of N2O Emissions. Collection of Czechoslovak Chemical Communications, 2008, 73, 1045-1060.	1.0	4
72	The Possibility of Balancing VOC Concentration Fluctuations by a Flow through an Activated Carbon Bed. Adsorption Science and Technology, 2011, 29, 157-168.	3.2	4

#	Article	IF	CITATIONS
73	Photocatalytic Hydrogen Formation from Ammonia in an Aqueous Solution Over Pt-Enriched TiO ₂ â€"ZrO ₂ Photocatalyst. Journal of Nanoscience and Nanotechnology, 2015, 15, 6833-6839.	0.9	4
74	Nanosheets-nanorods transformation during the non-isothermal decomposition of gadolinium acetate. Ceramics International, 2020, 46, 25467-25477.	4.8	4
75	Direct Decomposition of NO over Co-Mn-Al Mixed Oxides: Effect of Ce and/or K Promoters. Catalysts, 2020, 10, 808.	3.5	4
76	Oxygen effect in NO direct decomposition over K/Co-Mg-Mn-Al mixed oxide catalyst–Temperature programmed desorption study. Molecular Catalysis, 2021, 510, 111695.	2.0	4
77	The balancing of NO concentration fluctuations by adsorption/desorption process on activated carbon. Separation and Purification Technology, 2011, 78, 245-248.	7.9	3
78	Transmission Electron Microscopy Observation of Bionanogold Used for Preliminary N2O Decomposition Testing. Advanced Science Letters, 2016, 22, 631-636.	0.2	3
79	The balancing of VOC concentration fluctuations by adsorption/desorption process on activated carbon. Adsorption, 2013, 19, 667-673.	3.0	2
80	Catalytic Decomposition of N2O and NO. Catalysts, 2021, 11, 667.	3.5	1