List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5918012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Unique Paradigm for a Turn-ON Near-Infrared Cyanine-Based Probe: Noninvasive Intravital Optical Imaging of Hydrogen Peroxide. Journal of the American Chemical Society, 2011, 133, 10960-10965.	6.6	333
2	Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nature Medicine, 2004, 10, 255-261.	15.2	328
3	Administration, distribution, metabolism and elimination of polymer therapeutics. Journal of Controlled Release, 2012, 161, 446-460.	4.8	262
4	Immune-mediated approaches against COVID-19. Nature Nanotechnology, 2020, 15, 630-645.	15.6	260
5	Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors. ACS Nano, 2019, 13, 11008-11021.	7.3	209
6	Near-Infrared Dioxetane Luminophores with Direct Chemiluminescence Emission Mode. Journal of the American Chemical Society, 2017, 139, 13243-13248.	6.6	200
7	Polymer–drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. Journal of Controlled Release, 2001, 74, 135-146.	4.8	194
8	Remarkable Enhancement of Chemiluminescent Signal by Dioxetane–Fluorophore Conjugates: Turn-ON Chemiluminescence Probes with Color Modulation for Sensing and Imaging. Journal of the American Chemical Society, 2016, 138, 13438-13446.	6.6	180
9	Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nature Nanotechnology, 2019, 14, 891-901.	15.6	167
10	Targeting Bone Metastases with a Bispecific Anticancer and Antiangiogenic Polymer–Alendronate–Taxane Conjugate. Angewandte Chemie - International Edition, 2009, 48, 2949-2954.	7.2	164
11	Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell, 2005, 7, 251-261.	7.7	161
12	Real-time monitoring of drug release. Chemical Communications, 2010, 46, 553-555.	2.2	134
13	A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angewandte Chemie - International Edition, 2017, 56, 11793-11796.	7.2	126
14	PDEPT: polymer-directed enzyme prodrug therapy. British Journal of Cancer, 2001, 85, 1070-1076.	2.9	125
15	Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials, 2011, 32, 3862-3874.	5.7	121
16	Polymer Therapeutics for Cancer: Current Status and Future Challenges. , 0, , 1-65.		117
17	<i>In vivo</i> delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB Journal, 2010, 24, 3122-3134.	0.2	115
18	Polymer therapeutics—polymers as drugs, drug and protein conjugates and gene delivery systems: Past, present and future opportunities. Journal of Drug Targeting, 2006, 14, 337-341.	2.1	112

#	Article	IF	CITATIONS
19	Dendritic Poly(ethylene glycol) Bearing Paclitaxel and Alendronate for Targeting Bone Neoplasms. Molecular Pharmaceutics, 2011, 8, 1063-1072.	2.3	110
20	Targeting Angiogenesis-Dependent Calcified Neoplasms Using Combined Polymer Therapeutics. PLoS ONE, 2009, 4, e5233.	1.1	105
21	A 27-Amino-Acid Synthetic Peptide Corresponding to the NH2-Terminal Zinc-Binding Domain of Endostatin Is Responsible for Its Antitumor Activity. Cancer Research, 2005, 65, 3656-3663.	0.4	101
22	Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Current Opinion in Biotechnology, 2013, 24, 682-689.	3.3	100
23	Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. Journal of Controlled Release, 2014, 187, 145-157.	4.8	98
24	PDEPT:  Polymer-Directed Enzyme Prodrug Therapy. 2. HPMA Copolymer-β-lactamase and HPMA Copolymer-C-Dox as a Model Combination. Bioconjugate Chemistry, 2003, 14, 797-804.	1.8	94
25	Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research, 2022, 12, 500-525.	3.0	92
26	Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. European Journal of Pharmaceutical Sciences, 2011, 42, 547-558.	1.9	90
27	Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3. Cell Reports, 2016, 17, 1344-1356.	2.9	88
28	Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. Journal of Controlled Release, 2016, 239, 159-168.	4.8	81
29	Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Research, 2016, 76, 4359-4371.	0.4	81
30	6′′â€Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes. Angewandte Chemie - International Edition, 2012, 51, 5652-5656.	7.2	80
31	Direct Realâ€Time Monitoring of Prodrug Activation by Chemiluminescence. Angewandte Chemie - International Edition, 2018, 57, 9033-9037.	7.2	80
32	Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials, 2011, 32, 4450-4463.	5.7	79
33	Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. Journal of Controlled Release, 2017, 258, 182-195.	4.8	79
34	Design and development of polymer conjugates as anti-angiogenic agents. Advanced Drug Delivery Reviews, 2009, 61, 1159-1176.	6.6	78
35	Antiangiogenic Antitumor Activity of HPMA Copolymer–Paclitaxel–Alendronate Conjugate on Breast Cancer Bone Metastasis Mouse Model. Molecular Pharmaceutics, 2011, 8, 1052-1062.	2.3	77
36	A Novel Noninvasive Model of Endometriosis for Monitoring the Efficacy of Antiangiogenic Therapy. American Journal of Pathology, 2006, 168, 2074-2084.	1.9	76

#	Article	IF	CITATIONS
37	Poly(ethylene glycol)–paclitaxel–alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials, 2013, 34, 3795-3806.	5.7	76
38	Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Science Advances, 2021, 7, .	4.7	76
39	Polymer Therapeutics: Polymers as Drugs, Drug and Protein Conjugates and Gene Delivery Systems: Past, Present and Future Opportunities. , 0, , 1-8.		74
40	Enhanced cytotoxicity of a polymer–drug conjugate with triple payload of paclitaxel. Bioorganic and Medicinal Chemistry, 2009, 17, 4327-4335.	1.4	73
41	Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a leads to improved therapeutic response in pancreatic cancer. Nature Communications, 2018, 9, 16.	5.8	72
42	A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. Journal of Controlled Release, 2015, 208, 106-120.	4.8	66
43	Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Seminars in Immunology, 2017, 34, 3-24.	2.7	66
44	A Novel Antitumor Prodrug Platform Designed to Be Cleaved by the Endoprotease Legumain. Bioconjugate Chemistry, 2009, 20, 500-510.	1.8	65
45	Synthesis and use of QCy7-derived modular probes for the detection and imaging of biologically relevant analytes. Nature Protocols, 2014, 9, 27-36.	5.5	64
46	Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS Nano, 2016, 10, 2028-2045.	7.3	64
47	The route of lipid administration affects parenteral nutrition–induced hepatic steatosis in a mouse model. Journal of Pediatric Surgery, 2005, 40, 1446-1453.	0.8	62
48	Remarkable drug-release enhancement with an elimination-based AB3 self-immolative dendritic amplifier. Bioorganic and Medicinal Chemistry, 2007, 15, 3720-3727.	1.4	62
49	Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging. Chemical Science, 2019, 10, 2945-2955.	3.7	60
50	Malignant Progression and Blockade of Angiogenesis in a Murine Transgenic Model of Neuroblastoma. Cancer Research, 2007, 67, 9435-9442.	0.4	58
51	<i>In Vitro</i> and <i>in Vivo</i> Evaluation of Doxorubicin Conjugates with the Divalent Peptide E-[c(RGDfK) ₂] that Targets Integrin α _v 1² ₃ . Bioconjugate Chemistry, 2008, 19, 1414-1422.	1.8	58
52	Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics, 2018, 8, 3437-3460.	4.6	58
53	Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Delivery and Translational Research, 2014, 4, 38-49.	3.0	54
54	Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Reports, 2019, 28, 1785-1798.e6.	2.9	53

#	Article	IF	CITATIONS
55	Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release. Cancer Letters, 2014, 352, 81-89.	3.2	52
56	Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. ELife, 2017, 6, .	2.8	50
57	Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. Journal of Controlled Release, 2019, 307, 108-138.	4.8	49
58	NIR Fluorogenic Dye as a Modular Platform for Prodrug Assembly: Realâ€Time in vivo Monitoring of Drug Release. ChemMedChem, 2015, 10, 999-1007.	1.6	48
59	In vivo comparative study of distinct polymeric architectures bearing a combination of paclitaxel and doxorubicin at a synergistic ratio. Journal of Controlled Release, 2017, 257, 118-131.	4.8	48
60	Synthesis and characterization of a catalytic Antibody–HPMA copolymer-Conjugate as a tool for tumor selective prodrug activation. Bioorganic and Medicinal Chemistry, 2002, 10, 3023-3029.	1.4	47
61	In vitro and in vivo evaluation of a paclitaxel conjugate with the divalent peptide E-[c(RGDfK)2] that targets integrin αvβ3. International Journal of Pharmaceutics, 2009, 368, 89-97.	2.6	47
62	<i>ortho</i> -Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for <i>in vitro</i> and <i>in vivo</i> imaging. Organic and Biomolecular Chemistry, 2018, 16, 1708-1712.	1.5	46
63	Synthesis and evaluation of new NIR-fluorescent probes for cathepsin B: ICT versus FRET as a turn-ON mode-of-action. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2453-2458.	1.0	41
64	Achieving successful delivery of oligonucleotides — From physico-chemical characterization to in vivo evaluation. Biotechnology Advances, 2015, 33, 1294-1309.	6.0	39
65	Interfering Cancer with Polymeric siRNA Nanomedicines. Journal of Biomedical Nanotechnology, 2014, 10, 50-66.	0.5	38
66	Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine?. Drug Resistance Updates, 2016, 27, 39-58.	6.5	38
67	Design of membrane targeting tobramycin-based cationic amphiphiles with reduced hemolytic activity. MedChemComm, 2013, 4, 120-124.	3.5	37
68	P-selectin axis plays a key role in microglia immunophenotype and glioblastoma progression. Nature Communications, 2021, 12, 1912.	5.8	37
69	Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2201-2214.	1.7	36
70	Novel Pullulan Bioconjugate for Selective Breast Cancer Bone Metastases Treatment. Bioconjugate Chemistry, 2015, 26, 489-501.	1.8	35
71	Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. Advanced Therapeutics, 2021, 4, 2000124.	1.6	35
72	Persistent Chemiluminescent Glow of Phenoxyâ€dioxetane Luminophore Enables Unique CRETâ€Based Detection of Proteases. Chemistry - A European Journal, 2019, 25, 14679-14687.	1.7	34

#	Article	IF	CITATIONS
73	Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development?. Advanced Drug Delivery Reviews, 2021, 175, 113760.	6.6	34
74	Hormonal regulation of pigment epithelium-derived factor (PEDF) in granulosa cells. Molecular Human Reproduction, 2013, 19, 72-81.	1.3	32
75	Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Reports, 2021, 34, 108787.	2.9	31
76	Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. Journal of Medicinal Chemistry, 2018, 61, 10957-10975.	2.9	30
77	Targeting Tumor Vasculature: Reality or a Dream?. Journal of Drug Targeting, 2002, 10, 529-533.	2.1	29
78	Lomustine Nanoparticles Enable Both Bone Marrow Sparing and High Brain Drug Levels – A Strategy for Brain Cancer Treatments. Pharmaceutical Research, 2016, 33, 1289-1303.	1.7	29
79	A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angewandte Chemie, 2017, 129, 11955-11958.	1.6	28
80	Prospective Identification of Glioblastoma Cells Generating Dormant Tumors. PLoS ONE, 2012, 7, e44395.	1.1	28
81	Tumor cytotoxicity and endothelial Rac inhibition induced by TNP-470 in anaplastic thyroid cancer. Molecular Cancer Therapeutics, 2007, 6, 1329-1337.	1.9	27
82	Successful intracranial delivery of trastuzumab by gene-therapy for treatment of HER2-positive breast cancer brain metastases. Journal of Controlled Release, 2018, 291, 80-89.	4.8	27
83	α-Galactosylceramide and peptide-based nano-vaccine synergistically induced a strong tumor suppressive effect in melanoma. Acta Biomaterialia, 2018, 76, 193-207.	4.1	27
84	Angiogenesis regulation by nanocarriers bearing RNA interference. Advanced Drug Delivery Reviews, 2017, 119, 3-19.	6.6	26
85	Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Advanced Drug Delivery Reviews, 2017, 118, 52-64.	6.6	26
86	Protein Phosphatase Magnesium Dependent 1A Governs the Wound Healing–Inflammation–Angiogenesis Cross Talk on Injury. American Journal of Pathology, 2014, 184, 2936-2950.	1.9	25
87	Systemic delivery of siRNA by aminated poly(α)glutamate for the treatment of solid tumors. Journal of Controlled Release, 2017, 257, 132-143.	4.8	24
88	Bone metastasis is associated with acquisition of mesenchymal phenotype and immune suppression in a model of spontaneous breast cancer metastasis. Scientific Reports, 2020, 10, 13838.	1.6	23
89	Turn on chemiluminescence-based probes for monitoring tyrosinase activity in conjunction with biological thiols. Chemical Communications, 2021, 57, 11386-11389.	2.2	23
90	Development of PEGylated doxorubicinâ€Eâ€{c(RGDfK) ₂] conjugate for integrinâ€ŧargeted cancer therapy. Polymers for Advanced Technologies, 2011, 22, 103-113.	1.6	22

#	Article	IF	CITATIONS
91	Polymer conjugates for focal and targeted delivery of drugs. Polymers for Advanced Technologies, 2013, 24, 777-790.	1.6	18
92	Targeting NCAM-expressing neuroblastoma with polymeric precision nanomedicine. Journal of Controlled Release, 2017, 249, 162-172.	4.8	18
93	Direct Realâ€Time Monitoring of Prodrug Activation by Chemiluminescence. Angewandte Chemie, 2018, 130, 9171-9175.	1.6	18
94	Preclinical models and technologies to advance nanovaccine development. Advanced Drug Delivery Reviews, 2021, 172, 148-182.	6.6	18
95	Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 835-847.	1.7	17
96	Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy. Cancer Biology and Therapy, 2013, 14, 64-74.	1.5	16
97	Wilms Tumor NCAM-Expressing Cancer Stem Cells as Potential Therapeutic Target for Polymeric Nanomedicine. Molecular Cancer Therapeutics, 2017, 16, 2462-2472.	1.9	15
98	Integrin-targeted nano-sized polymeric systems for paclitaxel conjugation: a comparative study. Journal of Drug Targeting, 2017, 25, 829-844.	2.1	15
99	Structure–Function Correlation of Aminated Poly(α)glutamate as siRNA Nanocarriers. Biomacromolecules, 2016, 17, 2787-2800.	2.6	14
100	Tagging the Untaggable: A Difluoroalkyl-Sulfinate Ketone-Based Reagent for Direct C–H Functionalization of Bioactive Heteroarenes. Bioconjugate Chemistry, 2016, 27, 1965-1971.	1.8	14
101	Challenges in the implementation of MIRIBEL criteria on nanobiomed manuscripts. Nature Nanotechnology, 2019, 14, 627-628.	15.6	14
102	Tumor-Initiating Cells of Various Tumor Types Exhibit Differential Angiogenic Properties and React Differently to Antiangiogenic Drugs. Stem Cells, 2012, 30, 1831-1841.	1.4	13
103	Amphiphilic poly(α)glutamate polymeric micelles for systemic administration of siRNA to tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 303-315.	1.7	13
104	Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. Nature Communications, 2022, 13, .	5.8	13
105	Inhibition of angiogenesis by THAM-derived cotelomers endowed with thalidomide moieties. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 421-425.	1.0	12
106	Synthesis and Biological Evaluation of a Polyglutamic Acid–Dopamine Conjugate: A New Antiangiogenic Agent. Journal of Medicinal Chemistry, 2011, 54, 5255-5259.	2.9	12
107	Inhibition of Gene Expression and Cancer Cell Migration by CD44v3/6-Targeted Polyion Complexes. Bioconjugate Chemistry, 2016, 27, 947-960.	1.8	11
108	Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma. FASEB Journal, 2018, 32, 5835-5850.	0.2	11

7

#	Article	IF	CITATIONS
109	Spontaneous regression of micro-metastases following primary tumor excision: a critical role for primary tumor secretome. BMC Biology, 2020, 18, 163.	1.7	11
110	Rational Design of Multifunctional Polymer Therapeutics for Cancer Theranostics. Israel Journal of Chemistry, 2010, 50, 185-203.	1.0	10
111	Toward Development of Targeted Nonsteroidal Antiandrogen-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acidâ~Gadolinium Complex for Prostate Cancer Diagnostics. Journal of Medicinal Chemistry, 2010, 53, 6316-6325.	2.9	10
112	PEGylated dendritic polyglycerol conjugate targeting NCAM-expressing neuroblastoma: Limitations and challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1169-1179.	1.7	10
113	Oligo-guanidyl targeted bioconjugates forming rod shaped polyplexes as a new nanoplatform for oligonucleotide delivery. Journal of Controlled Release, 2019, 310, 58-73.	4.8	9
114	Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. Advanced Therapeutics, 2020, 3, 2000028.	1.6	9
115	The role of P-selectin in cancer-associated thrombosis and beyond. Thrombosis Research, 2022, 213, S22-S28.	0.8	9
116	HPMA copolymer–phospholipase C and dextrin–phospholipase A2 as model triggers for polymer enzyme liposome therapy (PELT). Journal of Drug Targeting, 2017, 25, 818-828.	2.1	7
117	Molecular Weight-Dependent Activity of Aminated Poly(α)glutamates as siRNA Nanocarriers. Polymers, 2018, 10, 548.	2.0	6
118	Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Molecular Pharmaceutics, 2019, 16, 1678-1693.	2.3	6
119	Computerâ€aided drug design in new druggable targets for the next generation of immuneâ€oncology therapies. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1397.	6.2	6
120	Monitoring Functionality and Morphology of Vasculature Recruited by Factors Secreted by Fast-growing Tumor-generating Cells. Journal of Visualized Experiments, 2014, , e51525.	0.2	5
121	Emerging Nanomedical Solutions for Angiogenesis Regulation. Advanced Drug Delivery Reviews, 2017, 119, 1-2.	6.6	2
122	Sulfonated Amphiphilic Poly(α)glutamate Amine—A Potential siRNA Nanocarrier for the Treatment of Both Chemo-Sensitive and Chemo-Resistant Glioblastoma Tumors. Pharmaceutics, 2021, 13, 2199.	2.0	2
123	Nanoscale-Based Delivery of RNAi for Cancer Therapy. , 2013, , 349-372.		1
124	TNP-470: The Resurrection of the First Synthetic Angiogenesis Inhibitor. , 2008, , 395-414.		1
125	Inhibition of Angiogenesis by THAM-Derived Cotelomers Endowed with Thalidomide Moieties ChemInform, 2004, 35, no.	0.1	0
126	Polymer Therapeutics—From Bench to Bedside. Israel Journal of Chemistry, 2010, 50, 145-146.	1.0	0

#	Article	IF	CITATIONS
127	Innentitelbild: 6′′-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes (Angew. Chem. 23/2012). Angewandte Chemie, 2012, 124, 5602-5602.	1.6	0
128	Inside Cover: 6′′-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes (Angew. Chem. Int. Ed. 23/2012). Angewandte Chemie - International Edition, 2012, 51, 5508-5508.	7.2	0
129	Targeting Drugs to Cancer: A Tough Journey to the Tumor Cell. , 2013, , 509-542.		0
130	Professor Ruth Duncan: a pioneer in the field of polymer therapeutics. Journal of Drug Targeting, 2017, 25, 757-758.	2.1	0
131	My greatest experiment. Nature Nanotechnology, 2018, 13, 176-176.	15.6	0
132	Editorial: Clinically-relevant and predictive cancer models for nanomedicine evaluation. Advanced Drug Delivery Reviews, 2022, 183, 114140.	6.6	0