List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5917548/publications.pdf Version: 2024-02-01

		10389	28297
103	44,306	72	105
papers	citations	h-index	g-index
117	117	117	35498
all docs	docs citations	times ranked	citing authors

HEATHER P HARDING

#	Article	IF	CITATIONS
1	ISRIB Blunts the Integrated Stress Response by Allosterically Antagonising the Inhibitory Effect of Phosphorylated eIF2 on eIF2B. Molecular Cell, 2021, 81, 88-103.e6.	9.7	93
2	Cargo receptor-assisted endoplasmic reticulum export of pathogenic α1-antitrypsin polymers. Cell Reports, 2021, 35, 109144.	6.4	19
3	Higher-order phosphatase–substrate contacts terminate the integrated stress response. Nature Structural and Molecular Biology, 2021, 28, 835-846.	8.2	11
4	GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 2020, 578, 444-448.	27.8	326
5	GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metabolism, 2019, 29, 707-718.e8.	16.2	286
6	The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. ELife, 2019, 8, .	6.0	93
7	Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science, 2018, 359, 1533-1536.	12.6	157
8	Defective ATG16L1-mediated removal of IRE1α drives Crohn's disease–like ileitis. Journal of Experimental Medicine, 2017, 214, 401-422.	8.5	141
9	A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response. Cell, 2017, 171, 1625-1637.e13.	28.9	176
10	Dual role of the integrated stress response in medulloblastoma tumorigenesis. Oncotarget, 2016, 7, 64124-64135.	1.8	15
11	PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis. American Journal of Pathology, 2016, 186, 1939-1951.	3.8	16
12	Skeletal muscleâ€specific eukaryotic translation initiation factor 2α phosphorylation controls amino acid metabolism and fibroblast growth factor 21â€mediated nonâ€cellâ€autonomous energy metabolism. FASEB Journal, 2016, 30, 798-812.	0.5	48
13	Paradoxical Sensitivity to an Integrated Stress Response Blocking Mutation in Vanishing White Matter Cells. PLoS ONE, 2016, 11, e0166278.	2.5	25
14	Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker. ELife, 2015, 4, e08961.	6.0	55
15	Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum. BMC Biology, 2015, 13, 2.	3.8	39
16	A Missense Mutation in <i>PPP1R15B</i> Causes a Syndrome Including Diabetes, Short Stature, and Microcephaly. Diabetes, 2015, 64, 3951-3962.	0.6	71
17	A Method to Quantify FRET Stoichiometry with Phasor Plot Analysis and Acceptor Lifetime Ingrowth. Biophysical Journal, 2015, 108, 999-1002.	0.5	21
18	Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science, 2015, 348, 1027-1030.	12.6	195

#	Article	IF	CITATIONS
19	Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death and Disease, 2015, 6, e1672-e1672.	6.3	260
20	G-actin provides substrate-specificity to eukaryotic initiation factor $2\hat{I}$ holophosphatases. ELife, 2015, 4, .	6.0	70
21	Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants. ELife, 2014, 3, e03421.	6.0	69
22	Impaired Eukaryotic Translation Initiation Factor 2B Activity Specifically in Oligodendrocytes Reproduces the Pathology of Vanishing White Matter Disease in Mice. Journal of Neuroscience, 2014, 34, 12182-12191.	3.6	44
23	PERK Activation Preserves the Viability and Function of Remyelinating Oligodendrocytes in Immune-Mediated Demyelinating Diseases. American Journal of Pathology, 2014, 184, 507-519.	3.8	40
24	Targeting the unfolded protein response in disease. Nature Reviews Drug Discovery, 2013, 12, 703-719.	46.4	765
25	Somatic <i>CALR</i> Mutations in Myeloproliferative Neoplasms with Nonmutated <i>JAK2</i> . New England Journal of Medicine, 2013, 369, 2391-2405.	27.0	1,556
26	Selective inhibition of the unfolded protein response: targeting catalytic sites for Schiff base modification. Molecular BioSystems, 2013, 9, 2408.	2.9	26
27	Role for the obesity-related <i>FTO</i> gene in the cellular sensing of amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2557-2562.	7.1	150
28	Oligodendrocyte-Specific Activation of PERK Signaling Protects Mice against Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2013, 33, 5980-5991.	3.6	91
29	Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox. Journal of Cell Biology, 2013, 201, 337-349.	5.2	91
30	Kinetic analysis of FTO (fat mass and obesity-associated) reveals that it is unlikely to function as a sensor for 2-oxoglutarate. Biochemical Journal, 2012, 444, 183-187.	3.7	27
31	The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E869-78.	7.1	476
32	Uncoupling Proteostasis and Development in Vitro with a Small Molecule Inhibitor of the Pancreatic Endoplasmic Reticulum Kinase, PERK. Journal of Biological Chemistry, 2012, 287, 44338-44344.	3.4	91
33	Protein-Folding Homeostasis in the Endoplasmic Reticulum and Nutritional Regulation. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013177-a013177.	5.5	95
34	Death Protein 5 and p53-Upregulated Modulator of Apoptosis Mediate the Endoplasmic Reticulum Stress–Mitochondrial Dialog Triggering Lipotoxic Rodent and Human β-Cell Apoptosis. Diabetes, 2012, 61, 2763-2775.	0.6	118
35	Establishing a Flow Process to Coumarinâ€8 arbaldehydes as Important Synthetic Scaffolds. Chemistry - A European Journal, 2012, 18, 9901-9910.	3.3	37
36	Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis. Science, 2011. 332. 91-94.	12.6	475

#	Article	IF	CITATIONS
37	A deregulated integrated stress response promotes interferonâ€Î³â€induced medulloblastoma. Journal of Neuroscience Research, 2011, 89, 1586-1595.	2.9	22
38	Mannose-6-phosphate regulates destruction of lipid-linked oligosaccharides. Molecular Biology of the Cell, 2011, 22, 2994-3009.	2.1	30
39	Inhibition of Nonsense-Mediated RNA Decay by the Tumor Microenvironment Promotes Tumorigenesis. Molecular and Cellular Biology, 2011, 31, 3670-3680.	2.3	131
40	Arginine Deficiency Causes Runting in the Suckling Period by Selectively Activating the Stress Kinase GCN2. Journal of Biological Chemistry, 2011, 286, 8866-8874.	3.4	11
41	ERO1-β, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. Journal of Cell Biology, 2010, 189, 769-769.	5.2	1
42	A Small Molecule Inhibitor of Endoplasmic Reticulum Oxidation 1 (ERO1) with Selectively Reversible Thiol Reactivity. Journal of Biological Chemistry, 2010, 285, 20993-21003.	3.4	91
43	ERO1-β, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. Journal of Cell Biology, 2010, 188, 821-832.	5.2	208
44	Flavonol Activation Defines an Unanticipated Ligand-Binding Site in the Kinase-RNase Domain of IRE1. Molecular Cell, 2010, 38, 291-304.	9.7	173
45	Role of ERO1-α–mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress–induced apoptosis. Journal of Cell Biology, 2009, 186, 783-792.	5.2	499
46	Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2α) dephosphorylation in mammalian development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1832-1837.	7.1	230
47	Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling. Nature Cell Biology, 2009, 11, 1473-1480.	10.3	241
48	An intact unfolded protein response in <i>Trpt1</i> knockout mice reveals phylogenic divergence in pathways for RNA ligation. Rna, 2008, 14, 225-232.	3.5	51
49	Dephosphorylation of Translation Initiation Factor 2α Enhances Glucose Tolerance and Attenuates Hepatosteatosis in Mice. Cell Metabolism, 2008, 7, 520-532.	16.2	389
50	Enhanced Integrated Stress Response Promotes Myelinating Oligodendrocyte Survival in Response to Interferon-γ. American Journal of Pathology, 2008, 173, 1508-1517.	3.8	91
51	Novel Function of PERK as a Mediator of Force-induced Apoptosis. Journal of Biological Chemistry, 2008, 283, 23462-23472.	3.4	27
52	Modulation of the Eukaryotic Initiation Factor 2 α-Subunit Kinase PERK by Tyrosine Phosphorylation. Journal of Biological Chemistry, 2008, 283, 469-475.	3.4	60
53	Translation attenuation by PERK balances ER glycoprotein synthesis with lipid-linked oligosaccharide flux. Journal of Cell Biology, 2007, 176, 605-616.	5.2	39
54	The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. Journal of Clinical Investigation, 2007, 117, 448-456.	8.2	166

#	Article	IF	CITATIONS
55	Cotranslocational Degradation Protects the Stressed Endoplasmic Reticulum from Protein Overload. Cell, 2006, 126, 727-739.	28.9	221
56	Antiviral effect of the mammalian translation initiation factor 2α kinase GCN2 against RNA viruses. EMBO Journal, 2006, 25, 1730-1740.	7.8	170
57	Interferon-Î ³ inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain, 2006, 129, 1306-1318.	7.6	185
58	ER stress disrupts Ca2+-signaling complexes and Ca2+ regulation in secretory and muscle cells from PERK-knockout mice. Journal of Cell Science, 2006, 119, 153-161.	2.0	56
59	Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. Journal of Cell Biology, 2006, 172, 201-209.	5.2	146
60	Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress. Molecular and Cellular Biology, 2006, 26, 9517-9532.	2.3	264
61	Ubiquitin-Like Protein 5 Positively Regulates Chaperone Gene Expression in the Mitochondrial Unfolded Protein Response. Genetics, 2006, 174, 229-239.	2.9	319
62	A Selective Inhibitor of eIF2α Dephosphorylation Protects Cells from ER Stress. Science, 2005, 307, 935-939.	12.6	1,277
63	ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO Journal, 2005, 24, 3470-3481.	7.8	634
64	Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature, 2005, 436, 1166-1170.	27.8	344
65	Heightened stress response in primary fibroblasts expressing mutant eIF2B genes from CACH/VWM leukodystrophy patients. Human Genetics, 2005, 118, 99-106.	3.8	77
66	Rapid B Cell Receptor-induced Unfolded Protein Response in Nonsecretory B Cells Correlates with Pro- Versus Antiapoptotic Cell Fate. Journal of Biological Chemistry, 2005, 280, 39762-39771.	3.4	50
67	Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-1 ³ . Journal of Cell Biology, 2005, 169, 603-612.	5.2	179
68	GCN2 Kinase in T Cells Mediates Proliferative Arrest and Anergy Induction in Response to Indoleamine 2,3-Dioxygenase. Immunity, 2005, 22, 633-642.	14.3	1,077
69	The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metabolism, 2005, 1, 273-277.	16.2	188
70	Bioactive small molecules reveal antagonism between the integrated stress response and sterol-regulated gene expression. Cell Metabolism, 2005, 2, 361-371.	16.2	66
71	Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. Journal of Cell Science, 2004, 117, 4055-4066.	2.0	522
72	Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. Journal of Cell Biology, 2004, 167, 27-33.	5.2	788

5

#	Article	IF	CITATIONS
73	CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes and Development, 2004, 18, 3066-3077.	5.9	1,648
74	Activating Transcription Factor 3 Is Integral to the Eukaryotic Initiation Factor 2 Kinase Stress Response. Molecular and Cellular Biology, 2004, 24, 1365-1377.	2.3	436
75	Activating Transcription Factor 4 Is Translationally Regulated by Hypoxic Stress. Molecular and Cellular Biology, 2004, 24, 7469-7482.	2.3	381
76	Translational Repression Mediates Activation of Nuclear Factor Kappa B by Phosphorylated Translation Initiation Factor 2. Molecular and Cellular Biology, 2004, 24, 10161-10168.	2.3	566
77	Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO Journal, 2004, 23, 169-179.	7.8	337
78	Stress-induced gene expression requires programmed recovery from translational repression. EMBO Journal, 2003, 22, 1180-1187.	7.8	409
79	The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biology, 2003, 5, 781-792.	10.3	780
80	An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress. Molecular Cell, 2003, 11, 619-633.	9.7	2,791
81	Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. Journal of Cell Biology, 2003, 163, 767-775.	5.2	282
82	Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. American Journal of Physiology - Cell Physiology, 2003, 284, C273-C284.	4.6	235
83	Transmission of cell stress from endoplasmic reticulum to mitochondria. Journal of Cell Biology, 2002, 157, 1151-1160.	5.2	189
84	Endoplasmic Reticulum Stress and the Development of Diabetes. Diabetes, 2002, 51, S455-S461.	0.6	408
85	Transcriptional and Translational Control in the Mammalian Unfolded Protein Response. Annual Review of Cell and Developmental Biology, 2002, 18, 575-599.	9.4	838
86	Activation of GCN2 in UV-Irradiated Cells Inhibits Translation. Current Biology, 2002, 12, 1279-1286.	3.9	245
87	IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 2002, 415, 92-96.	27.8	2,452
88	Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cellular Models of Parkinson's Disease. Journal of Neuroscience, 2002, 22, 10690-10698.	3.6	515
89	Diabetes Mellitus and Exocrine Pancreatic Dysfunction in Perkâ^'/â^' Mice Reveals a Role for Translational Control in Secretory Cell Survival. Molecular Cell, 2001, 7, 1153-1163.	9.7	1,081
90	Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. Journal of Neurochemistry, 2001, 77, 1418-1421.	3.9	209

#	Article	IF	CITATIONS
91	Feedback Inhibition of the Unfolded Protein Response by GADD34-Mediated Dephosphorylation of elF2α. Journal of Cell Biology, 2001, 153, 1011-1022.	5.2	1,187
92	Translational Regulation in the Cellular Response to Biosynthetic Load on the Endoplasmic Reticulum. Cold Spring Harbor Symposia on Quantitative Biology, 2001, 66, 499-508.	1.1	42
93	Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology, 2000, 2, 326-332.	10.3	2,397
94	Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Molecular Cell, 2000, 6, 1099-1108.	9.7	2,743
95	Perk Is Essential for Translational Regulation and Cell Survival during the Unfolded Protein Response. Molecular Cell, 2000, 5, 897-904.	9.7	1,746
96	Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1. Science, 2000, 287, 664-666.	12.6	2,595
97	Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999, 397, 271-274.	27.8	2,856
98	Amino acid limitation regulatesCHOPexpression through a specific pathway independent of the unfolded protein response. FEBS Letters, 1999, 448, 211-216.	2.8	82
99	CHOP-Dependent Stress-Inducible Expression of a Novel Form of Carbonic Anhydrase VI. Molecular and Cellular Biology, 1999, 19, 495-504.	2.3	130
100	Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO Journal, 1998, 17, 5708-5717.	7.8	701
101	Monomeric Nuclear Receptors. , 1998, , 261-279.		1
102	Differential Activation of Peroxisome Proliferator-activated Receptors by Eicosanoids. Journal of Biological Chemistry, 1995, 270, 23975-23983.	3.4	609
103	IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. , 0, .		1