Manuela Sechilariu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5916900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Techno-Economic Analysis of Energy Storage Components of Microgrids for Improving Energy Management Strategies. Energies, 2022, 15, 1556.	1.6	7
2	Global Cost and Carbon Impact Assessment Methodology for Electric Vehicles' PV-Powered Charging Station. Applied Sciences (Switzerland), 2022, 12, 4115.	1.3	4
3	Real-Time Power Management Including an Optimization Problem for PV-Powered Electric Vehicle Charging Stations. Applied Sciences (Switzerland), 2022, 12, 4323.	1.3	10
4	Power and Energy Management of a DC Microgrid for a Renewable Curtailment Case Due to the Integration of a Small-Scale Wind Turbine. Energies, 2022, 15, 3421.	1.6	2
5	PV-Powered Electric Vehicle Charging Stations: Preliminary Requirements and Feasibility Conditions. Applied Sciences (Switzerland), 2021, 11, 1770.	1.3	26
6	PV Benefits Assessment for PV-Powered Charging Stations for Electric Vehicles. Applied Sciences (Switzerland), 2021, 11, 4127.	1.3	18
7	Human-System Interfaces for PV-Powered Electric Vehicles Charging Station. , 2021, , .		1
8	PV-Powered Charging Station: Energy Management and Cost Optimization. , 2021, , .		1
9	Carbon Impact Methodology for PV-powered Infrastructure for Recharging Electric Vehicles. , 2021, , .		Ο
10	PV-Powered Charging Station for Electric Vehicles: Power Management with Integrated V2G. Applied Sciences (Switzerland), 2020, 10, 6500.	1.3	18
11	Intelligent Energy Management of Electrical Power Systems. Applied Sciences (Switzerland), 2020, 10, 2951.	1.3	9
12	DC Microgrid System Modeling and Simulation Based on a Specific Algorithm for Grid-Connected and Islanded Modes with Real-Time Demand-Side Management Optimization. Applied Sciences (Switzerland), 2020, 10, 2544.	1.3	14
13	Modelling, Simulation, and Management Strategy of an Electric Vehicle Charging Station Based on a DC Microgrid. Applied Sciences (Switzerland), 2020, 10, 2053.	1.3	46
14	Power Management of a Full DC Microgrid for Building Self-Consumption Applications. Lecture Notes in Electrical Engineering, 2020, , 177-189.	0.3	0
15	Management Strategy of an Electric Vehicle Charging Station Under Power Limitation. Lecture Notes in Electrical Engineering, 2020, , 191-202.	0.3	0
16	Optimal Power Dispatching in the DC Microgrid with Clear Sky Irradiance Model. Lecture Notes in Electrical Engineering, 2020, , 497-509.	0.3	0
17	On-grid/off-grid DC microgrid optimization and demand response management. , 2020, , .		2
18	Shedding and restoration algorithms for an EV charging station to maximize available power. , 2020, , .		2

MANUELA SECHILARIU

#	Article	IF	CITATIONS
19	Experimental Implementation of a Flexible PV Power Control Mechanism in a DC Microgrid. Energies, 2019, 12, 1233.	1.6	7
20	Electromobility framework study: infrastructure and urban planning for EV charging station empowered by PVâ€based microgrid. IET Electrical Systems in Transportation, 2019, 9, 176-185.	1.5	26
21	A novel Decoupled Trigonometric Saturated droop controller for power sharing in islanded low-voltage microgrids. Electric Power Systems Research, 2019, 168, 146-161.	2.1	26
22	Production décentralisée d'électricité renouvelable. Micro-réseaux urbains et réseau électric intelligent. , 2019, , 151-164.	que	0
23	A conceptual framework for full optimal operation of a grid-connected DC microgrid. , 2018, , .		4
24	Social Acceptance of Microgrids Dedicated to Electric Vehicle Charging Stations. , 2018, , .		4
25	Power Management Strategy for an Autonomous DC Microgrid. Applied Sciences (Switzerland), 2018, 8, 2202.	1.3	20
26	Integrated Control for Small Power Wind Generator. Energies, 2018, 11, 1217.	1.6	2
27	Experimental analysis of impact of maximum power point tracking methods on energy efficiency for smallâ€scale wind energy conversion system. IET Renewable Power Generation, 2017, 11, 389-397.	1.7	15
28	Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 2017, 132, 14-27.	4.4	135
29	Influence of Dynamic Efficiency in the DC Microgrid Power Balance. Energies, 2017, 10, 1563.	1.6	8
30	Smart Microgrid and Urban Planning for Better Electromobility. , 2017, , .		4
31	Urban DC Microgrids for Advanced Local Energy Management with Smart Grid Communication. Springer Proceedings in Energy, 2017, , 3-9.	0.2	3
32	Connecting and Integrating Variable Renewable Electricity inÂUtility Grid. , 2016, , 1-33.		8
33	Experimental Evaluation of Urban Direct Current Microgrid. , 2016, , 209-250.		2
34	Photovoltaic Source Modeling and Control. , 2016, , 35-91.		6
35	Backup Power Resources forÂMicrogrid. , 2016, , 93-132.		8
36	Direct Current Microgrid Power Modeling and Control. , 2016, , 133-170.		2

#	Article	IF	CITATIONS
37	Direct Current Microgrid Supervisory System Design. , 2016, , 171-208.		1
38	Optimized Load Shedding Approach for Grid-Connected DC Microgrid Systems under Realistic Constraints. Buildings, 2016, 6, 50.	1.4	21
39	Prediction-based economic dispatch and online optimization for grid-connected DC microgrid. , 2016, , .		2
40	Diesel generator slow start-up compensation by supercapacitor for DC microgrid power balancing. , 2016, , .		7
41	Load shedding and restoration real-time optimization for DC microgrid power balancing. , 2016, , .		6
42	Adaptive-tuning of extended Kalman filter used for small scale wind generator control. Renewable Energy, 2016, 85, 1237-1245.	4.3	12
43	Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid. Energies, 2015, 8, 7945-7967.	1.6	40
44	Prediction-based optimization for islanded microgrid resources scheduling and management. , 2015, , .		4
45	Impact of power converters' efficiency on building-integrated microgrid. , 2015, , .		2
46	Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations. Energies, 2015, 8, 4335-4356.	1.6	43
47	Maximum power point tracking method for small scale wind generator experimental validation. , 2015, , .		1
48	Day-ahead microgrid optimal self-scheduling: Comparison between three methods applied to isolated DC microgrid. , 2014, , .		8
49	Estimation of speed rotation for MPPT used by small scale wind generator integrated in DC microgrid experimental validation. , 2014, , .		2
50	Experimental comparison of photovoltaic panel operating cell temperature models. , 2014, , .		7
51	Supervision control for optimal energy cost management in DC microgrid: Design and simulation. International Journal of Electrical Power and Energy Systems, 2014, 58, 140-149.	3.3	67
52	Power management and optimization for isolated DC microgrid. , 2014, , .		19
53	DC microgrid for future electric vehicle charging station designed by Energetic Macroscopic Representation and Maximum Control Structure. , 2014, , .		5
54	DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation. Energy Conversion and Management, 2014, 82, 1-10.	4.4	69

MANUELA SECHILARIU

#	Article	IF	CITATIONS
55	Simple improved control of phase error compensation for low power operation of PV grid-connected inverter with LCL filter. European Journal of Electrical Engineering, 2014, 17, 27-45.	1.1	Ο
56	Power flow Petri Net modelling for building integrated multi-source power system with smart grid interaction. Mathematics and Computers in Simulation, 2013, 91, 119-133.	2.4	21
57	Energetic macroscopic representation and inversion-based control of DC micro-grid. , 2013, , .		Ο
58	Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems. International Journal of Electrical Power and Energy Systems, 2013, 46, 98-107.	3.3	101
59	Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication. Energy and Buildings, 2013, 59, 236-243.	3.1	127
60	Experimental comparison of small wind turbine vector control with and without position sensor — Extended Kalman filter application. , 2013, , .		1
61	Building Integrated Photovoltaic System With Energy Storage and Smart Grid Communication. IEEE Transactions on Industrial Electronics, 2013, 60, 1607-1618.	5.2	269
62	Intelligent DC microgrid with smart grid communications: Control strategy consideration and design. , 2013, , .		6
63	A simple experimental prediction model of photovoltaic power for DC microgrid. , 2012, , .		9
64	DC Load and Batteries Control Limitations for Photovoltaic Systems. Experimental Validation. IEEE Transactions on Power Electronics, 2012, 27, 4030-4038.	5.4	56
65	Intelligent DC Microgrid With Smart Grid Communications: Control Strategy Consideration and Design. IEEE Transactions on Smart Grid, 2012, 3, 2148-2156.	6.2	222
66	A simple PV constrained production control strategy. , 2012, , .		11
67	Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms. Renewable Energy, 2010, 35, 2381-2387.	4.3	181
68	Electric vehicle charging system with PV Grid-connected configuration. , 2010, , .		19
69	Energetic Macroscopic Representation and Maximum Control Structure of electric vehicles charging photovoltaic system. , 2010, , .		1
70	Energy efficiency experimental tests comparison of P&O algorithm for PV power system. , 2010, , .		10
71	Multi-source power generation system in semi-isolated and safety grid configuration for buildings. , 2010, , .		8
72	Batteries and DC charge control of stand-alone photovoltaic system. Experimental validation. , 2010, ,		2

5

.

#	Article	IF	CITATIONS
73	Représentation énergétique macroscopique et structure maximale de commande d'un réseau semi-isolé. Application A une installation photovoltaÃ⁻que alimentant un bâtiment basse consommation. Revue Internationale De Génie électrique, 2009, 12, 609-637.	0.0	0

74 Optimal control of hybrid dynamical systems with hysteresis. , 1999, , .