
William G Wierda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5916319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2013, 369, 32-42.	13.9	2,019
2	Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2016, 374, 311-322.	13.9	1,532
3	Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. New England Journal of Medicine, 2020, 382, 545-553.	13.9	1,252
4	Early Results of a Chemoimmunotherapy Regimen of Fludarabine, Cyclophosphamide, and Rituximab As Initial Therapy for Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2005, 23, 4079-4088.	0.8	899
5	Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2016, 374, 323-332.	13.9	785
6	Substantial Susceptibility of Chronic Lymphocytic Leukemia to BCL2 Inhibition: Results of a Phase I Study of Navitoclax in Patients With Relapsed or Refractory Disease. Journal of Clinical Oncology, 2012, 30, 488-496.	0.8	719
7	Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncology, The, 2016, 17, 768-778.	5.1	676
8	Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood, 2008, 112, 975-980.	0.6	638
9	Three-year follow-up of treatment-naÃ ⁻ ve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood, 2015, 125, 2497-2506.	0.6	618
10	Phase I First-in-Human Study of Venetoclax in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma. Journal of Clinical Oncology, 2017, 35, 826-833.	0.8	596
11	Ofatumumab As Single-Agent CD20 Immunotherapy in Fludarabine-Refractory Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2010, 28, 1749-1755.	0.8	541
12	Chemoimmunotherapy With Fludarabine, Cyclophosphamide, and Rituximab for Relapsed and Refractory Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2005, 23, 4070-4078.	0.8	480
13	Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood, 2016, 127, 303-309.	0.6	441
14	Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncology, The, 2014, 15, 48-58.	5.1	438
15	Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood, 2008, 111, 5291-5297.	0.6	393
16	Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzumab for treatment-naive chronic lymphocytic leukaemia (ELEVATE-TN): a randomised, controlled, phase 3 trial. Lancet, The, 2020, 395, 1278-1291.	6.3	393
17	Ibrutinib and Venetoclax for First-Line Treatment of CLL. New England Journal of Medicine, 2019, 380, 2095-2103.	13.9	388
18	Chronic lymphocytic leukaemia. Nature Reviews Disease Primers, 2017, 3, 16096.	18.1	363

#	Article	IF	CITATIONS
19	Single-agent ibrutinib in treatment-naÃ⁻ve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood, 2018, 131, 1910-1919.	0.6	339
20	CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood, 2000, 96, 2917-2924.	0.6	318
21	Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncology, The, 2014, 15, 1090-1099.	5.1	315
22	Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncology, The, 2018, 19, 65-75.	5.1	314
23	Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood, 2007, 109, 4679-4685.	0.6	303
24	Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood, 2015, 125, 2062-2067.	0.6	303
25	Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nature Communications, 2016, 7, 11589.	5.8	285
26	Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood, 2009, 114, 4441-4450.	0.6	284
27	High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood, 2009, 113, 3050-3058.	0.6	283
28	Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood, 2008, 112, 1923-1930.	0.6	282
29	Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study. Lancet, The, 2021, 397, 892-901.	6.3	260
30	Venetoclax for Patients With Chronic Lymphocytic Leukemia With 17p Deletion: Results From the Full Population of a Phase II Pivotal Trial. Journal of Clinical Oncology, 2018, 36, 1973-1980.	0.8	257
31	Experience with alemtuzumab plus rituximab in patients with relapsed and refractory lymphoid malignancies. Blood, 2003, 101, 3413-3415.	0.6	247
32	Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell, 2019, 36, 369-384.e13.	7.7	224
33	Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinibâ€based regimens. Cancer, 2015, 121, 3612-3621.	2.0	220
34	Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia. Cancer, 2003, 98, 2657-2663.	2.0	203
35	Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood, 2007, 110, 3316-3325.	0.6	203
36	Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood, 2013, 122, 1891-1899.	0.6	184

#	Article	IF	CITATIONS
37	Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2015, 21, 3705-3715.	3.2	183
38	Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood, 2019, 133, 1011-1019.	0.6	168
39	Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood, 2009, 113, 4637-4645.	0.6	164
40	Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood, 2011, 117, 3016-3024.	0.6	164
41	Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood, 2011, 118, 3489-3498.	0.6	161
42	Non-Hodgkin's Lymphomas. Journal of the National Comprehensive Cancer Network: JNCCN, 2011, 9, 484-560.	2.3	161
43	Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. Blood, 2011, 118, 5126-5129.	0.6	152
44	De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood, 2009, 114, 957-964.	0.6	150
45	Phase I-II Study of Oxaliplatin, Fludarabine, Cytarabine, and Rituximab Combination Therapy in Patients With Richter's Syndrome or Fludarabine-Refractory Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2008, 26, 196-203.	0.8	145
46	Efficacy of venetoclax in relapsed chronic lymphocytic leukemia is influenced by disease and response variables. Blood, 2019, 134, 111-122.	0.6	145
47	Phase II Study of Lenalidomide and Rituximab As Salvage Therapy for Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2013, 31, 584-591.	0.8	137
48	lsoform-selective phosphoinositide 3′-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell–mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood, 2009, 113, 5549-5557.	0.6	135
49	Eradication of bone marrow minimal residual disease may prompt early treatment discontinuation in CLL. Blood, 2014, 123, 3727-3732.	0.6	133
50	Economic Burden of Chronic Lymphocytic Leukemia in the Era of Oral Targeted Therapies in the United States. Journal of Clinical Oncology, 2017, 35, 166-174.	0.8	131
51	High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood, 2003, 101, 4903-4908.	0.6	130
52	Second cancers in patients with chronic lymphocytic leukemia who received frontline fludarabine, cyclophosphamide and rituximab therapy: distribution and clinical outcomes. Leukemia and Lymphoma, 2015, 56, 1643-1650.	0.6	130
53	Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: updated phase 2 results. Blood, 2020, 135, 1204-1213.	0.6	130
54	Comprehensive Safety Analysis of Venetoclax Monotherapy for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2018, 24, 4371-4379.	3.2	127

#	Article	IF	CITATIONS
55	Multivariable Model for Time to First Treatment in Patients With Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2011, 29, 4088-4095.	0.8	124
56	Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood, 2018, 131, 1704-1711.	0.6	122
57	Chemoimmunotherapy with O-FC in previously untreated patients with chronic lymphocytic leukemia. Blood, 2011, 117, 6450-6458.	0.6	121
58	Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood, 2014, 123, 2783-2790.	0.6	119
59	Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. Journal of Clinical Oncology, 2021, 39, 3853-3865.	0.8	115
60	NCCN Guidelines Insights: Non-Hodgkin's Lymphomas, Version 3.2016. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 1067-1079.	2.3	107
61	Comparison of Acalabrutinib, A Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells. Clinical Cancer Research, 2017, 23, 3734-3743.	3.2	106
62	Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood, 2016, 127, 279-286.	0.6	105
63	Longâ€ŧerm outcomes for patients with chronic lymphocytic leukemia who discontinue ibrutinib. Cancer, 2017, 123, 2268-2273.	2.0	103
64	The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood, 2008, 112, 711-720.	0.6	97
65	Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. Blood, 2011, 117, 156-164.	0.6	96
66	The natural history of fludarabine-refractory chronic lymphocytic leukemia patients who fail alemtuzumab or have bulky lymphadenopathy. Leukemia and Lymphoma, 2007, 48, 1931-1939.	0.6	92
67	Ibrutinib Therapy Increases T Cell Repertoire Diversity in Patients with Chronic Lymphocytic Leukemia. Journal of Immunology, 2017, 198, 1740-1747.	0.4	92
68	KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood, 2021, 138, 11-22.	0.6	90
69	Phase 1/2 study of lumiliximab combined with fludarabine, cyclophosphamide, and rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood, 2010, 115, 489-495.	0.6	86
70	International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood, 2020, 135, 1859-1869.	0.6	86
71	Therapeutic advances in leukemia and myelodysplastic syndrome over the past 40 years. Cancer, 2008, 113, 1933-1952.	2.0	84
72	A pilot study of lower doses of ibrutinib in patients with chronic lymphocytic leukemia. Blood, 2018, 132, 2249-2259.	0.6	84

#	Article	IF	CITATIONS
73	Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood, 2022, 139, 3278-3289.	0.6	83
74	Relevance of the immunoglobulin VH somatic mutation status in patients with chronic lymphocytic leukemia treated with fludarabine, cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens. Blood, 2009, 113, 3168-3171.	0.6	82
75	Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia. Blood, 2011, 118, 2062-2068.	0.6	74
76	Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naÃ ⁻ ve chronic lymphocytic leukemia. Leukemia, 2022, 36, 1171-1175.	3.3	72
77	Characteristics Associated With Important Clinical End Points in Patients With Chronic Lymphocytic Leukemia at Initial Treatment. Journal of Clinical Oncology, 2009, 27, 1637-1643.	0.8	71
78	Targeted multigene deep sequencing of Bruton tyrosine kinase inhibitor–resistant chronic lymphocytic leukemia with disease progression and Richter transformation. Cancer, 2019, 125, 559-574.	2.0	70
79	Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. Blood, 2022, 139, 1794-1806.	0.6	66
80	A retrospective comparison of three sequential groups of patients with Recurrent/Refractory chronic lymphocytic leukemia treated with fludarabine-based regimens. Cancer, 2006, 106, 337-345.	2.0	65
81	Phase 1b study of venetoclax-obinutuzumab in previously untreated and relapsed/refractory chronic lymphocytic leukemia. Blood, 2019, 133, 2765-2775.	0.6	63
82	Outcomes of first-line treatment for chronic lymphocytic leukemia with 17p deletion. Haematologica, 2014, 99, 1350-1355.	1.7	62
83	Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia, 2021, 35, 3282-3286.	3.3	61
84	Cyclophosphamide, fludarabine, alemtuzumab, and rituximab as salvage therapy for heavily pretreated patients with chronic lymphocytic leukemia. Blood, 2011, 118, 2085-2093.	0.6	56
85	Myelosuppression after frontline fludarabine, cyclophosphamide, and rituximab in patients with chronic lymphocytic leukemia. Cancer, 2013, 119, 3805-3811.	2.0	56
86	NCCN Guidelines Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 1.2017. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 293-311.	2.3	55
87	Novel Immune-Based Treatment Strategies for Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2005, 23, 6325-6332.	0.8	53
88	Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia. JAMA Oncology, 2021, 7, 1213.	3.4	53
89	Venetoclax (VEN) Monotherapy for Patients with Chronic Lymphocytic Leukemia (CLL) Who Relapsed after or Were Refractory to Ibrutinib or Idelalisib. Blood, 2016, 128, 637-637.	0.6	48
90	Long-term Follow-up of Treatment with Ibrutinib and Rituximab in Patients with High-Risk Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2017, 23, 2154-2158.	3.2	47

#	Article	IF	CITATIONS
91	Acalabrutinib in treatment-naive chronic lymphocytic leukemia. Blood, 2021, 137, 3327-3338.	0.6	47
92	Fludarabine, cyclophosphamide, mitoxantrone plus rituximab (FCM-R) in frontline CLL <70 Years. Leukemia Research, 2010, 34, 284-288.	0.4	46
93	Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 1.2015. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 326-362.	2.3	46
94	Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood, 2019, 134, 1951-1959.	0.6	45
95	Multipleâ€dose granulocyteâ€macrophage–colonyâ€stimulating factor plus 23â€valent polysaccharide pneumococcal vaccine in patients with chronic lymphocytic leukemia. Cancer, 2008, 113, 383-387.	2.0	43
96	AMG-176, an Mcl-1 Antagonist, Shows Preclinical Efficacy in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2020, 26, 3856-3867.	3.2	43
97	Fludarabine and mitoxantrone for patients with chronic lymphocytic leukemia. Cancer, 2004, 100, 2583-2591.	2.0	40
98	Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide. Blood, 2018, 131, 1820-1832.	0.6	40
99	Measurable residual disease in chronic lymphocytic leukemia: expert review and consensus recommendations. Leukemia, 2021, 35, 3059-3072.	3.3	40
100	Ibrutinib (Ibr) Plus Venetoclax (Ven) for First-Line Treatment of Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL): Results from the MRD Cohort of the Phase 2 CAPTIVATE Study. Blood, 2019, 134, 35-35.	0.6	40
101	B-cell Receptor Signaling Regulates Metabolism in Chronic Lymphocytic Leukemia. Molecular Cancer Research, 2017, 15, 1692-1703.	1.5	38
102	Evaluation of 230 patients with relapsed/refractory deletion 17p chronic lymphocyticÂleukaemia treated with ibrutinib from 3 clinical trials. British Journal of Haematology, 2018, 182, 504-512.	1.2	37
103	Serial minimal residual disease (MRD) monitoring during first-line FCR treatment for CLL may direct individualized therapeutic strategies. Leukemia, 2018, 32, 2388-2398.	3.3	34
104	NCCN Guidelines® Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 3.2022. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, 622-634.	2.3	33
105	Ibrutinib (Ibr) Plus Venetoclax (Ven) for First-Line Treatment of Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL): 1-Year Disease-Free Survival (DFS) Results From the MRD Cohort of the Phase 2 CAPTIVATE Study. Blood, 2020, 136, 16-17.	0.6	32
106	Three Newly Approved Drugs for Chronic Lymphocytic Leukemia: Incorporating Ibrutinib, Idelalisib, and Obinutuzumab into Clinical Practice. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, 385-391.	0.2	31
107	LDOC1 mRNA is differentially expressed in chronic lymphocytic leukemia and predicts overall survival in untreated patients. Blood, 2011, 117, 4076-4084.	0.6	28
108	Population pharmacokinetics of ofatumumab in patients with chronic lymphocytic leukemia, follicular lymphoma, and rheumatoid arthritis. Journal of Clinical Pharmacology, 2014, 54, 818-827.	1.0	28

#	Article	IF	CITATIONS
109	Ofatumumab and Lenalidomide for Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia: Correlation between Responses and Immune Characteristics. Clinical Cancer Research, 2016, 22, 2359-2367.	3.2	28
110	Lenalidomide as Initial Treatment of Elderly Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2008, 112, 45-45.	0.6	28
111	Association of gene mutations with timeâ€ŧoâ€first treatment in 384 treatmentâ€naive chronic lymphocytic leukaemia patients. British Journal of Haematology, 2019, 187, 307-318.	1.2	26
112	What is the Best Frontline Therapy for Patients with CLL and 17p Deletion?. Current Hematologic Malignancy Reports, 2011, 6, 36-46.	1.2	24
113	Investigational Immunotherapeutics for B-Cell Malignancies. Journal of Clinical Oncology, 2010, 28, 884-892.	0.8	22
114	Targeting BCL2 in Chronic Lymphocytic Leukemia and Other Hematologic Malignancies. Drugs, 2019, 79, 1287-1304.	4.9	22
115	Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (iFCG) regimen for chronic lymphocytic leukemia (CLL) with mutated IGHV and without TP53 aberrations. Leukemia, 2021, 35, 3421-3429.	3.3	22
116	Statin and aspirin use is associated with improved outcome of FCR therapy in relapsed/refractory chronic lymphocytic leukemia. Blood, 2014, 123, 1424-1426.	0.6	21
117	Phase 2 CAPTIVATE results of ibrutinib (ibr) plus venetoclax (ven) in first-line chronic lymphocytic leukemia (CLL) Journal of Clinical Oncology, 2018, 36, 7502-7502.	0.8	21
118	Tumour lysis syndrome in patients with chronic lymphocytic leukaemia treated with BCL-2 inhibitors: risk factors, prophylaxis, and treatment recommendations. Lancet Haematology,the, 2020, 7, e168-e176.	2.2	20
119	Immunohistochemical detection of ZAP70 in chronic lymphocytic leukemia predicts immunoglobulin heavy chain gene mutation status and time to progression. Modern Pathology, 2010, 23, 1518-1523.	2.9	19
120	Routine sequencing in <scp>CLL</scp> has prognostic implications and provides new insight into pathogenesis and targeted treatments. British Journal of Haematology, 2019, 185, 852-864.	1.2	19
121	Ofatumumab Combined with Fludarabine and Cyclophosphamide (O-FC) Shows High Activity in Patients with Previously Untreated Chronic Lymphocytic Leukemia (CLL): Results From a Randomized, Multicenter, International, Two-Dose, Parallel Group, Phase II Trial Blood, 2009, 114, 207-207.	0.6	19
122	Pirtobrutinib inhibits wild-type and mutant Bruton's tyrosine kinase-mediated signaling in chronic lymphocytic leukemia. Blood Cancer Journal, 2022, 12, .	2.8	19
123	β ₂ â€microglobulin normalization within 6 months of ibrutinibâ€based treatment is associated with superior progressionâ€free survival in patients with chronic lymphocytic leukemia. Cancer, 2016, 122, 565-573.	2.0	18
124	Initial Therapy for Patients With Chronic Lymphocytic Leukemia. Seminars in Oncology, 2006, 33, 202-209.	0.8	17
125	Selfâ€administered, subcutaneous alemtuzumab to treat residual disease in patients with chronic lymphocytic leukemia. Cancer, 2011, 117, 116-124.	2.0	17
126	Ibrutinib: a paradigm shift in management of CLL. Expert Review of Hematology, 2014, 7, 705-717.	1.0	17

#	Article	IF	CITATIONS
127	Evaluation of bendamustine in combination with fludarabine in primary chronic lymphocytic leukemia cells. Blood, 2014, 123, 3780-3789.	0.6	17
128	Current and Investigational Therapies for Patients with CLL. Hematology American Society of Hematology Education Program, 2006, 2006, 285-294.	0.9	16
129	Azacitidine in Fludarabine-Refractory Chronic Lymphocytic Leukemia: A Phase II Study. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 292-295.	0.2	16
130	Ofatumumab monotherapy in fludarabine-refractory chronic lymphocytic leukemia: final results from a pivotal study. Haematologica, 2015, 100, e311-4.	1.7	15
131	Incidental Richter transformation in chronic lymphocytic leukemia patients during temporary interruption of ibrutinib. Blood Advances, 2020, 4, 4508-4511.	2.5	15
132	Combined Cyclophosphamide, Fludarabine, Alemtuzumab, and Rituximab (CFAR) Is Active for Relapsed and Refractory Patients with CLL Blood, 2004, 104, 340-340.	0.6	15
133	Gene therapy and active immune therapy of hematologic malignancies. Best Practice and Research in Clinical Haematology, 2007, 20, 557-568.	0.7	14
134	Fludarabine, cyclophosphamide, and multipleâ€dose rituximab as frontline therapy for chronic lymphocytic leukemia. Cancer, 2015, 121, 3869-3876.	2.0	14
135	Ofatumumab retreatment and maintenance in fludarabineâ€refractory chronic lymphocytic leukaemia patients. British Journal of Haematology, 2015, 170, 40-49.	1.2	14
136	CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia. Leukemia, 2021, 35, 1610-1620.	3.3	14
137	Salvage Therapy with Combined Cyclophosphamide (C), Fludarabine (F), Alemtuzumab (A), and Rituximab (R) (CFAR) for Heavily Pre-Treated Patients with CLL Blood, 2005, 106, 719-719.	0.6	14
138	Circulating CD52 and CD20 levels at end of treatment predict for progression and survival in patients with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab (FCR). British Journal of Haematology, 2010, 148, 386-393.	1.2	13
139	Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia. Leukemia, 2019, 33, 1663-1674.	3.3	13
140	Genetics and molecular biology of chronic lymphocytic leukemia. Current Treatment Options in Oncology, 2005, 6, 215-225.	1.3	12
141	Venetoclax for chronic lymphocytic leukaemia patients who progress after more than one Bâ€cell receptor pathway inhibitor. British Journal of Haematology, 2019, 185, 961-966.	1.2	12
142	Combination Therapy with Lenalidomide and Rituximab in Patients with Relapsed Chronic Lymphocytic Leukemia (CLL) Blood, 2009, 114, 206-206.	0.6	12
143	An Ongoing Phase 1/2a Study of ABT-263; Pharmacokinetics (PK), Safety and Anti-Tumor Activity in Patients (pts) with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL) Blood, 2009, 114, 883-883.	0.6	12
144	Chronic lymphocytic leukemia. Cancer, 2009, 115, 3830-3841.	2.0	11

#	Article	IF	CITATIONS
145	Killing of Chronic Lymphocytic Leukemia by the Combination of Fludarabine and Oxaliplatin Is Dependent on the Activity of XPF Endonuclease. Clinical Cancer Research, 2011, 17, 4731-4741.	3.2	11
146	Combined Ibrutinib and Venetoclax for First-Line Treatment for Patients with Chronic Lymphocytic Leukemia (CLL): Focus on MRD Results. Blood, 2020, 136, 42-43.	0.6	11
147	The Role of BTK Inhibition in the Treatment of Chronic Lymphocytic Leukemia: A Clinical View. Journal of Experimental Pharmacology, 2021, Volume 13, 923-935.	1.5	11
148	Chronic Lymphocytic Leukemia: New Concepts for Future Therapy. Clinical Lymphoma, Myeloma and Leukemia, 2010, 10, 369-378.	0.2	10
149	Fludarabine, cyclophosphamide and rituximab plus granulocyte macrophage colony-stimulating factor as frontline treatment for patients with chronic lymphocytic leukemia. Leukemia and Lymphoma, 2014, 55, 828-833.	0.6	10
150	Dynamic changes of the normal B lymphocyte repertoire in CLL in response to ibrutinib or FCR chemo-immunotherapy. Oncolmmunology, 2018, 7, e1417720.	2.1	10
151	Tumour debulking and reduction in predicted risk of tumour lysis syndrome with singleâ€agent ibrutinib in patients with chronic lymphocytic leukaemia. British Journal of Haematology, 2019, 186, 184-188.	1.2	10
152	Clinical Efficacy of Lenalidomide in Fludarabine-Refractory Chronic Lymphocytic Leukemia Patients Blood, 2007, 110, 3108-3108.	0.6	10
153	Vecabrutinib inhibits B-cell receptor signal transduction in chronic lymphocytic leukemia cell types with wild-type or mutant Bruton tyrosine kinase. Haematologica, 2022, 107, 292-297.	1.7	9
154	Final Analysis From the International Trial of Single-Agent Ofatumumab In Patients with Fludarabine-Refractory Chronic Lymphocytic Leukemia. Blood, 2010, 116, 921-921.	0.6	9
155	Activation and expansion of T-follicular helper cells in chronic lymphocytic leukemia nurselike cell co-cultures. Leukemia, 2022, 36, 1324-1335.	3.3	9
156	Cyclin-dependent kinase inhibitor fadraciclib (CYC065) depletes anti-apoptotic protein and synergizes with venetoclax in primary chronic lymphocytic leukemia cells. Leukemia, 2022, 36, 1596-1608.	3.3	9
157	Lenalidomide-Induced Graft-VsLeukemia Effect in a Patient With Chronic Lymphocytic Leukemia Who Relapsed After Allogeneic Stem Cell Transplant. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, e105-e109.	0.2	8
158	<scp>PET</scp> â€positive lymphadenopathy in <scp>CLL</scp> —Not always <scp>R</scp> ichter transformation. American Journal of Hematology, 2017, 92, 405-406.	2.0	8
159	A phase <scp>II</scp> trial of eltrombopag for patients with chronic lymphocytic leukaemia (<scp>CLL</scp>) and thrombocytopenia. British Journal of Haematology, 2019, 185, 606-608.	1.2	8
160	Longâ€ŧerm followâ€up of patients receiving allogeneic stem cell transplant for chronic lymphocytic leukaemia: mixed Tâ€cell chimerism is associated with high relapse risk and inferior survival. British Journal of Haematology, 2017, 177, 567-577.	1.2	7
161	Proteomics profiling identifies induction of caveolin-1 in chronic lymphocytic leukemia cells by bone marrow stromal cells. Leukemia and Lymphoma, 2018, 59, 1427-1438.	0.6	7
162	Expression of BCL2 alternative proteins and association with outcome in CLL patients treated with venetoclax. Leukemia and Lymphoma, 2021, 62, 1129-1135.	0.6	6

#	Article	IF	CITATIONS
163	A phase I-II trial of fludarabine, bendamustine and rituximab (FBR) in previously treated patients with CLL. Oncotarget, 2017, 8, 22104-22112.	0.8	6
164	<i>TP53</i> â€altered chronic lymphocytic leukemia treated with firstline Bruton's tyrosine kinase inhibitorâ€based therapy: A retrospective analysis. American Journal of Hematology, 2022, 97, 1005-1012.	2.0	6
165	Updates to the Management of Chronic Lymphocytic Leukemia. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 662-665.	2.3	5
166	Proteomic profiling based classification of CLL provides prognostication for modern therapy and identifies novel therapeutic targets. Blood Cancer Journal, 2022, 12, 43.	2.8	5
167	The landscape of genetic mutations in patients with chronic lymphocytic leukaemia and complex karyotype. British Journal of Haematology, 2019, 187, e1-e4.	1.2	4
168	RPPA-based proteomics recognizes distinct epigenetic signatures in chronic lymphocytic leukemia with clinical consequences. Leukemia, 2022, 36, 712-722.	3.3	4
169	Associations of ofatumumab exposure and treatment outcomes in patients with untreated CLL receiving chemoimmunotherapy. Leukemia and Lymphoma, 2017, 58, 348-356.	0.6	3
170	Sustained long-lasting responses after lenalidomide discontinuation in patients with chronic lymphocytic leukemia. Leukemia, 2018, 32, 2278-2281.	3.3	3
171	Immunologic monitoring in chronic lymphocytic leukemia. Current Oncology Reports, 2003, 5, 419-425.	1.8	2
172	Clinical and molecular characteristics and treatment patterns of adolescent and young adult patients with chronic lymphocytic leukaemia. British Journal of Haematology, 2021, 194, 61-68.	1.2	2
173	Clinical outcome of allogeneic stem cell transplantation in patients with B-cell lymphoid malignancies following treatment with targeted small molecule inhibitors. Leukemia and Lymphoma, 2022, , 1-9.	0.6	2
174	Chronic Lymphocytic Leukemia: How to Assess Prognosis in 2007. Clinical Leukemia, 2007, 1, 162-167.	0.2	1
175	Critical appraisal of the role of rituximab in the treatment of patients with previously untreated or treated chronic lymphocytic leukemia (CLL). Journal of Blood Medicine, 2010, 1, 115.	0.7	1
176	High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines, 2022, 10, 1405.	1.4	1
177	New aspects of the treatment of chronic lymphocytic leukemia. Current Hematologic Malignancy Reports, 2006, 1, 251-257.	1.2	0
178	HLA Homozygosity and Haplotype Bias Among Patients with Chronic Lymphocytic Leukemia: Implications for Disease Control by Physiologic Immune Surveillance. Blood, 2010, 116, 1370-1370.	0.6	0
179	Ibrutinib Plus Venetoclax for First-Line Chronic Lymphocytic Leukemia Treatment. , 0, , .		0