
## Szabolcs Fekete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5916236/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fast liquid chromatography: The domination of core?shell and very fine particles. Journal of Chromatography A, 2012, 1228, 57-71.                                                                                                   | 1.8 | 232       |
| 2  | Theory and practice of size exclusion chromatography for the analysis of protein aggregates. Journal of Pharmaceutical and Biomedical Analysis, 2014, 101, 161-173.                                                                 | 1.4 | 226       |
| 3  | Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical<br>Characterization of Protein Biopharmaceuticals. Analytical Chemistry, 2016, 88, 480-507.                                                     | 3.2 | 205       |
| 4  | Ion-exchange chromatography for the characterization of biopharmaceuticals. Journal of<br>Pharmaceutical and Biomedical Analysis, 2015, 113, 43-55.                                                                                 | 1.4 | 186       |
| 5  | Comparative study of new shell-type, sub-2μm fully porous and monolith stationary phases, focusing on mass-transfer resistance. Journal of Chromatography A, 2010, 1217, 3642-3653.                                                 | 1.8 | 159       |
| 6  | Current and future trends in UHPLC. TrAC - Trends in Analytical Chemistry, 2014, 63, 2-13.                                                                                                                                          | 5.8 | 140       |
| 7  | Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal<br>antibodies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,<br>2017, 1065-1066, 119-128. | 1.2 | 135       |
| 8  | Method development for the separation of monoclonal antibody charge variants in cation exchange<br>chromatography, Part I: Salt gradient approach. Journal of Pharmaceutical and Biomedical Analysis,<br>2015, 102, 33-44.          | 1.4 | 133       |
| 9  | New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69, 9-27.                                   | 1.4 | 120       |
| 10 | Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. Journal of<br>Pharmaceutical and Biomedical Analysis, 2014, 87, 105-119.                                                                   | 1.4 | 113       |
| 11 | Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 282-289.               | 1.4 | 113       |
| 12 | Analytical strategies for the characterization of therapeutic monoclonal antibodies. TrAC - Trends in<br>Analytical Chemistry, 2013, 42, 74-83.                                                                                     | 5.8 | 104       |
| 13 | Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. Journal of Pharmaceutical and Biomedical Analysis, 2016, 130, 3-18.                                                  | 1.4 | 104       |
| 14 | Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art<br>instruments. Journal of Chromatography A, 2013, 1314, 288-297.                                                                       | 1.8 | 94        |
| 15 | The impact of extra-column band broadening on the chromatographic efficiency of 5cm long narrow-bore very efficient columns. Journal of Chromatography A, 2011, 1218, 5286-5291.                                                    | 1.8 | 92        |
| 16 | Direct Identification of Rituximab Main Isoforms and Subunit Analysis by Online Selective<br>Comprehensive Two-Dimensional Liquid Chromatography–Mass Spectrometry. Analytical Chemistry,<br>2015, 87, 8307-8315.                   | 3.2 | 90        |
| 17 | Efficiency of the new sub-2μm core–shell (Kinetex™) column in practice, applied for small and large<br>molecule separation. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 482-490.                                   | 1.4 | 87        |
| 18 | Recent Advances in Chromatography for Pharmaceutical Analysis. Analytical Chemistry, 2019, 91, 210-239.                                                                                                                             | 3.2 | 85        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. Journal of Chromatography A, 2016, 1448, 81-92.                                                                                                                                                                                                           | 1.8 | 80        |
| 20 | Therapeutic Fcâ€fusion proteins: Current analytical strategies. Journal of Separation Science, 2021, 44,<br>35-62.                                                                                                                                                                                                                                                               | 1.3 | 78        |
| 21 | Kinetic evaluation of new generation of column packed with 1.3î¼m core–shell particles. Journal of<br>Chromatography A, 2013, 1308, 104-113.                                                                                                                                                                                                                                     | 1.8 | 77        |
| 22 | Hydrophilic Interaction Chromatography Hyphenated with Mass Spectrometry: A Powerful Analytical<br>Tool for the Comparison of Originator and Biosimilar Therapeutic Monoclonal Antibodies at the<br>Middle-up Level of Analysis. Analytical Chemistry, 2017, 89, 2086-2092.                                                                                                      | 3.2 | 77        |
| 23 | Comparison of originator and biosimilar therapeutic monoclonal antibodies using comprehensive<br>two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. MAbs, 2016, 8,<br>1224-1234.                                                                                                                                                               | 2.6 | 76        |
| 24 | Characterization of 30 therapeutic antibodies and related products by size exclusion<br>chromatography: Feasibility assessment for future mass spectrometry hyphenation. Journal of<br>Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1065-1066, 35-43.                                                                                    | 1.2 | 73        |
| 25 | Evaluation of a new wide pore core–shell material (Aeris™ WIDEPORE) and comparison with other<br>existing stationary phases for the analysis of intact proteins. Journal of Chromatography A, 2012, 1236,<br>177-188.                                                                                                                                                            | 1.8 | 72        |
| 26 | The effect of pressure and mobile phase velocity on the retention properties of small analytes and<br>large biomolecules in ultra-high pressure liquid chromatography. Journal of Chromatography A, 2012,<br>1270, 127-138.                                                                                                                                                      | 1.8 | 66        |
| 27 | Shell and small particles; Evaluation of new column technology. Journal of Pharmaceutical and<br>Biomedical Analysis, 2009, 49, 64-71.                                                                                                                                                                                                                                           | 1.4 | 64        |
| 28 | Pushing the performance limits of reversed-phase ultra high performance liquid chromatography with 1.3μm core–shell particles. Journal of Chromatography A, 2013, 1311, 90-97.                                                                                                                                                                                                   | 1.8 | 64        |
| 29 | Evaluation of size exclusion chromatography columns packed with sub-3 μm particles for the analysis of biopharmaceutical proteins. Journal of Chromatography A, 2017, 1498, 80-89.                                                                                                                                                                                               | 1.8 | 64        |
| 30 | Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversedâ€phase stationary phases. Journal of Separation Science, 2012, 35, 3113-3123.                                                                                                                                                                                        | 1.3 | 62        |
| 31 | Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice. Journal of Chromatography A, 2015, 1408, 1-14.                                                                                                                                                                                                   | 1.8 | 61        |
| 32 | Practical method development for the separation of monoclonal antibodies and<br>antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of<br>the mobile phase. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 393-403.                                                                                                   | 1.4 | 61        |
| 33 | Protocols for the analytical characterization of therapeutic monoclonal antibodies. II – Enzymatic<br>and chemical sample preparation. Journal of Chromatography B: Analytical Technologies in the<br>Biomedical and Life Sciences, 2017, 1060, 325-335.                                                                                                                         | 1.2 | 59        |
| 34 | Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates.<br>Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 493-505.                                                                                                                                                                                                   | 1.4 | 54        |
| 35 | Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic<br>interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution<br>mass spectrometry. I â' Optimization of separation conditions. Journal of Chromatography B:<br>Analytical Technologies in the Biomedical and Life Sciences. 2016. 1032, 103-111. | 1.2 | 51        |
| 36 | Rapid high performance liquid chromatography method development with high prediction accuracy, using 5cm long narrow bore columns packed with sub-2î¼m particles and Design Space computer modeling. Journal of Chromatography A, 2009, 1216, 7816-7823.                                                                                                                         | 1.8 | 49        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Analysis of recombinant monoclonal antibodies by RPLC: Toward a generic method development approach. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 158-168.                                                                                              | 1.4 | 49        |
| 38 | Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2114/4m particles. Journal of Pharmaceutical and Biomedical Analysis, 2013, 78-79, 141-149.                                                                  | 1.4 | 49        |
| 39 | Ultra-high-performance liquid chromatography for the characterization of therapeutic proteins.<br>TrAC - Trends in Analytical Chemistry, 2014, 63, 76-84.                                                                                                               | 5.8 | 49        |
| 40 | Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident<br>characterization of therapeutic proteins. Journal of Chromatography B: Analytical Technologies in<br>the Biomedical and Life Sciences, 2018, 1092, 368-378.          | 1.2 | 48        |
| 41 | Facts and myths about columns packed with sub-311/4m and sub-2111/4m particles. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 56-64.                                                                                                                     | 1.4 | 47        |
| 42 | Evaluation of recent very efficient wide-pore stationary phases for the reversed-phase separation of proteins. Journal of Chromatography A, 2012, 1252, 90-103.                                                                                                         | 1.8 | 47        |
| 43 | Development of a rapid method for the determination and confirmation of nitroimidazoles in six<br>matrices by fast liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and<br>Biomedical Analysis, 2012, 64-65, 40-48.                            | 1.4 | 47        |
| 44 | Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Review of Proteomics, 2019, 16, 337-362.                                                                                                    | 1.3 | 47        |
| 45 | Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: Optimization of the phase system. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121, 161-173. | 1.4 | 46        |
| 46 | Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography. Journal of Chromatography A, 2014, 1360, 275-287.                                                     | 1.8 | 44        |
| 47 | Computer-assisted UHPLC–MS method development and optimization for the determination of 24 antineoplastic drugs used in hospital pharmacy. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 395-401.                                                       | 1.4 | 44        |
| 48 | Contribution of various types of liquid chromatography–mass spectrometry instruments to band<br>broadening in fast analysis. Journal of Chromatography A, 2013, 1310, 45-55.                                                                                            | 1.8 | 42        |
| 49 | Adsorption and recovery issues of recombinant monoclonal antibodies in reversed-phase liquid chromatographyâ€. Journal of Separation Science, 2015, 38, 1-8.                                                                                                            | 1.3 | 42        |
| 50 | Protocols for the analytical characterization of therapeutic monoclonal antibodies. I –<br>Non-denaturing chromatographic techniques. Journal of Chromatography B: Analytical Technologies<br>in the Biomedical and Life Sciences, 2017, 1058, 73-84.                   | 1.2 | 42        |
| 51 | Comparison of liquid chromatography and supercritical fluid chromatography coupled to compact single quadrupole mass spectrometer for targeted in vitro metabolism assay. Journal of Chromatography A, 2014, 1371, 244-256.                                             | 1.8 | 40        |
| 52 | Characterization of new types of stationary phases for fast liquid chromatographic applications.<br>Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 703-709.                                                                                               | 1.4 | 39        |
| 53 | Coupling non-denaturing chromatography to mass spectrometry for the characterization of monoclonal antibodies and related products. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113207.                                                               | 1.4 | 38        |
| 54 | Reliability of simulated robustness testing in fast liquid chromatography, using state-of-the-art<br>column technology, instrumentation and modelling software. Journal of Pharmaceutical and<br>Biomedical Analysis, 2014, 89, 67-75.                                  | 1.4 | 36        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis<br>of monoclonal antibodies and related products. Journal of Chromatography A, 2018, 1549, 63-76.                                                                                                                                                                                           | 1.8 | 36        |
| 56 | Systematic evaluation of mobile phase additives for the LC–MS characterization of therapeutic proteins. Talanta, 2015, 136, 60-67.                                                                                                                                                                                                                                                                 | 2.9 | 34        |
| 57 | Characterization of cation exchanger stationary phases applied for the separations of therapeutic monoclonal antibodies. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 169-176.                                                                                                                                                                                                    | 1.4 | 34        |
| 58 | Fast gradient screening of pharmaceuticals with 5 cm long, narrow bore reversed-phase columns<br>packed with sub-3 μm core–shell and sub-2 μm totally porous particles. Talanta, 2011, 84, 416-423.                                                                                                                                                                                                | 2.9 | 32        |
| 59 | Possibilities of new generation columns packed with 1.3μm core–shell particles in gradient elution mode. Journal of Chromatography A, 2013, 1320, 86-95.                                                                                                                                                                                                                                           | 1.8 | 32        |
| 60 | Influence of pressure and temperature on molar volume and retention properties of peptides in ultra-high pressure liquid chromatography. Journal of Chromatography A, 2013, 1311, 65-71.                                                                                                                                                                                                           | 1.8 | 32        |
| 61 | Robust UHPLC Separation Method Development for Multi-API Product Containing Amlodipine and Bisoprolol: The Impact of Column Selection. Chromatographia, 2014, 77, 1119-1127.                                                                                                                                                                                                                       | 0.7 | 32        |
| 62 | Analysis of recombinant monoclonal antibodies in hydrophilic interaction chromatography: A generic<br>method development approach. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 24-32.                                                                                                                                                                                            | 1.4 | 32        |
| 63 | Systematic comparison of a new generation of columns packed with sub-2 μm superficially porous particles. Journal of Separation Science, 2014, 37, 189-197.                                                                                                                                                                                                                                        | 1.3 | 31        |
| 64 | Development of a fast workflow to screen the charge variants of therapeutic antibodies. Journal of<br>Chromatography A, 2017, 1498, 147-154.                                                                                                                                                                                                                                                       | 1.8 | 31        |
| 65 | Implementation of a generic liquid chromatographic method development workflow: Application to<br>the analysis of phytocannabinoids and Cannabis sativa extracts. Journal of Pharmaceutical and<br>Biomedical Analysis, 2018, 155, 116-124.                                                                                                                                                        | 1.4 | 31        |
| 66 | Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. II- Identification of sub-units for the characterization of even and odd load drug species. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, | 1.2 | 30        |
| 67 | 2016, 1032, 91-102.<br>Proof of Concept To Achieve Infinite Selectivity for the Chromatographic Separation of Therapeutic<br>Proteins. Analytical Chemistry, 2019, 91, 12954-12961.                                                                                                                                                                                                                | 3.2 | 30        |
| 68 | Determination of size variants by CE-SDS for approved therapeutic antibodies: Key implications of<br>subclasses and light chain specificities. Journal of Pharmaceutical and Biomedical Analysis, 2020, 184,<br>113166.                                                                                                                                                                            | 1.4 | 30        |
| 69 | Orthogonal Middle-up Approaches for Characterization of the Glycan Heterogeneity of Etanercept by<br>Hydrophilic Interaction Chromatography Coupled to High-Resolution Mass Spectrometry. Analytical<br>Chemistry, 2019, 91, 873-880.                                                                                                                                                              | 3.2 | 29        |
| 70 | Estimation of pressure-, temperature- and frictional heating-related effects on proteins' retention<br>under ultra-high-pressure liquid chromatographic conditions. Journal of Chromatography A, 2015,<br>1393, 73-80.                                                                                                                                                                             | 1.8 | 28        |
| 71 | Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2016, 131, 124-132.                                                                                                                                                                                                               | 1.4 | 28        |
| 72 | Protocols for the analytical characterization of therapeutic monoclonal antibodies. III – Denaturing chromatographic techniques hyphenated to mass spectrometry. Journal of Chromatography B:<br>Analytical Technologies in the Biomedical and Life Sciences, 2018, 1096, 95-106.                                                                                                                  | 1.2 | 28        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 1: Alternative mobile phases and fine tuning of the separation. Journal of Pharmaceutical and Biomedical Analysis, 2019, 168, 138-147.  | 1.4 | 28        |
| 74 | A generic workflow for the characterization of therapeutic monoclonal antibodies—application to daratumumab. Analytical and Bioanalytical Chemistry, 2019, 411, 4615-4627.                                                                     | 1.9 | 28        |
| 75 | Current and future trends in reversed-phase liquid chromatography-mass spectrometry of therapeutic proteins. TrAC - Trends in Analytical Chemistry, 2020, 130, 115962.                                                                         | 5.8 | 28        |
| 76 | Towards a simple on-line coupling of ion exchange chromatography and native mass spectrometry for<br>the detailed characterization of monoclonal antibodies. Journal of Chromatography A, 2021, 1655,<br>462499.                               | 1.8 | 28        |
| 77 | Comparative study of recent wide-pore materials of different stationary phase morphology, applied<br>for the reversed-phase analysis of recombinant monoclonal antibodies. Analytical and Bioanalytical<br>Chemistry, 2013, 405, 3137-3151.    | 1.9 | 26        |
| 78 | Use of Ultrashort Columns for Therapeutic Protein Separations. Part 1: Theoretical Considerations and Proof of Concept. Analytical Chemistry, 2021, 93, 1277-1284.                                                                             | 3.2 | 26        |
| 79 | High resolution reversed phase analysis of recombinant monoclonal antibodies by ultra-high pressure<br>liquid chromatography column coupling. Journal of Pharmaceutical and Biomedical Analysis, 2013, 83,<br>273-278.                         | 1.4 | 25        |
| 80 | Comprehensive study on the effects of sodium and potassium additives in size exclusion chromatographic separations of protein biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 242-251.                       | 1.4 | 25        |
| 81 | Characterizing various monoclonal antibodies with milder reversed phase chromatography<br>conditions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,<br>2018, 1096, 1-10.                           | 1.2 | 25        |
| 82 | New developments and possibilities of wide-pore superficially porous particle technology applied for<br>the liquid chromatographic analysis of therapeutic proteins. Journal of Pharmaceutical and<br>Biomedical Analysis, 2018, 158, 225-235. | 1.4 | 25        |
| 83 | Separation of antibody drug conjugate species by RPLC: A generic method development approach.<br>Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 60-69.                                                                          | 1.4 | 24        |
| 84 | Optimization of non-linear gradient in hydrophobic interaction chromatography for the analytical characterization of antibody-drug conjugates. Journal of Chromatography A, 2017, 1481, 82-91.                                                 | 1.8 | 24        |
| 85 | Estimation of the effects of longitudinal temperature gradients caused by frictional heating on the solute retention using fully porous and superficially porous sub-21î4m materials. Journal of Chromatography A, 2014, 1359, 124-130.        | 1.8 | 23        |
| 86 | The importance of system band broadening in modern size exclusion chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2017, 135, 50-60.                                                                                         | 1.4 | 23        |
| 87 | Computer assisted liquid chromatographic method development for the separation of therapeutic proteins. Analyst, The, 2016, 141, 5488-5501.                                                                                                    | 1.7 | 22        |
| 88 | Achievable separation performance and analysis time in current liquid chromatographic practice for monoclonal antibody separations. Journal of Pharmaceutical and Biomedical Analysis, 2017, 141, 59-69.                                       | 1.4 | 21        |
| 89 | Size Exclusion and Ion Exchange Chromatographic Hardware Modified with a Hydrophilic Hybrid<br>Surface. Analytical Chemistry, 2022, 94, 3360-3367.                                                                                             | 3.2 | 19        |
| 90 | ANALYSIS OF SULFONAMIDE RESIDUES IN REAL HONEY SAMPLES USING LIQUID CHROMATOGRAPHY WITH FLUORESCENCE AND TANDEM MASS SPECTROMETRY DETECTION. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 1105-1125.                   | 0.5 | 18        |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Evolution and Current Trends in Liquid and Supercritical Fluid Chromatography. Current<br>Chromatography, 2014, 1, 15-40.                                                                                                                                            | 0.1 | 18        |
| 92  | Reliability of computer-assisted method transfer between several column dimensions packed with<br>1.3–51¼m core–shell particles and between various instruments. Journal of Pharmaceutical and<br>Biomedical Analysis, 2014, 94, 188-195.                            | 1.4 | 18        |
| 93  | A workflow for column interchangeability in liquid chromatography using modeling software and quality-by-design principles. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 220-225.                                                                   | 1.4 | 18        |
| 94  | Is hydrophobic interaction chromatography the most suitable technique to characterize site-specific antibody-drug conjugates?. Journal of Chromatography A, 2019, 1586, 149-153.                                                                                     | 1.8 | 18        |
| 95  | Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations,<br>part 2: Evaluation of recent stationary phases. Journal of Pharmaceutical and Biomedical Analysis,<br>2019, 172, 320-328.                                       | 1.4 | 17        |
| 96  | Evaluation of a new wide-pore superficially porous material with carbon core and<br>nanodiamond-polymer shell for the separation of proteins. Journal of Chromatography A, 2015, 1414,<br>51-59.                                                                     | 1.8 | 16        |
| 97  | Evaluation of new superficially porous particles with carbon core and nanodiamond–polymer shell for proteins characterization. Journal of Pharmaceutical and Biomedical Analysis, 2015, 104, 130-136.                                                                | 1.4 | 16        |
| 98  | Negative gradient slope methods to improve the separation of closely eluting proteins. Journal of Chromatography A, 2021, 1635, 461743.                                                                                                                              | 1.8 | 16        |
| 99  | Apparent efficiency of serially coupled columns in isocratic and gradient elution modes. Journal of Chromatography A, 2018, 1571, 121-131.                                                                                                                           | 1.8 | 15        |
| 100 | Development of an innovative salt-mediated pH gradient cation exchange chromatography method for<br>the characterization of therapeutic antibodies. Journal of Chromatography B: Analytical<br>Technologies in the Biomedical and Life Sciences, 2020, 1160, 122379. | 1.2 | 13        |
| 101 | Improving selectivity and performing online on-column fractioning in liquid chromatography for the separation of therapeutic biopharmaceutical products. Journal of Chromatography A, 2020, 1618, 460901.                                                            | 1.8 | 13        |
| 102 | Use of Ultra-short Columns for Therapeutic Protein Separations, Part 2: Designing the Optimal<br>Column Dimension for Reversed-Phase Liquid Chromatography. Analytical Chemistry, 2021, 93,<br>1285-1293.                                                            | 3.2 | 13        |
| 103 | Ultra-short ion-exchange columns for fast charge variants analysis of therapeutic proteins. Journal of Chromatography A, 2021, 1657, 462568.                                                                                                                         | 1.8 | 13        |
| 104 | Pressure-Enhanced Liquid Chromatography, a Proof of Concept: Tuning Selectivity with Pressure<br>Changes and Gradients. Analytical Chemistry, 2022, 94, 7877-7884.                                                                                                   | 3.2 | 13        |
| 105 | The importance of being metal-free: The critical choice of column hardware for size exclusion chromatography coupled to high resolution mass spectrometry. Analytica Chimica Acta, 2021, 1183, 338987.                                                               | 2.6 | 12        |
| 106 | Impact of the column on effluent pH in cation exchange pH gradient chromatography, a practical study. Journal of Chromatography A, 2020, 1626, 461350.                                                                                                               | 1.8 | 11        |
| 107 | Using 1.5Âmm internal diameter columns for optimal compatibility with current liquid chromatographic systems. Journal of Chromatography A, 2021, 1650, 462258.                                                                                                       | 1.8 | 11        |
| 108 | Comparison of various silica-based monoliths for the analysis of large biomoleculesâ€. Journal of<br>Separation Science, 2013, 36, 2231-2243.                                                                                                                        | 1.3 | 10        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Impact of particle size gradients on the apparent efficiency of chromatographic columns. Journal of<br>Chromatography A, 2019, 1603, 208-215.                                                                                                        | 1.8 | 10        |
| 110 | Prototype sphere-on-sphere silica particles for the separation of large biomolecules. Journal of Chromatography A, 2016, 1431, 94-102.                                                                                                               | 1.8 | 9         |
| 111 | Updating the European Pharmacopoeia impurity profiling method for terazosin and suggesting alternative columns. Journal of Pharmaceutical and Biomedical Analysis, 2020, 187, 113371.                                                                | 1.4 | 9         |
| 112 | Enhancing the Quality of Separation in One-Dimensional Peptide Mapping Using Mathematical Transformation. Chromatographia, 2012, 75, 305-312.                                                                                                        | 0.7 | 8         |
| 113 | Importance of vial shape and type on the reproducibility of size exclusion chromatography<br>measurement of monoclonal antibodies. Journal of Chromatography B: Analytical Technologies in the<br>Biomedical and Life Sciences, 2016, 1032, 131-138. | 1.2 | 8         |
| 114 | New wide-pore superficially porous stationary phases with low hydrophobicity applied for the analysis of monoclonal antibodies. Journal of Chromatography A, 2021, 1642, 462050.                                                                     | 1.8 | 8         |
| 115 | Salt gradient and ion-pair mediated anion exchange of intact messenger ribonucleic acids. Journal of<br>Chromatography Open, 2022, 2, 100031.                                                                                                        | 0.8 | 8         |
| 116 | Direct coupling of size exclusion chromatography and mass spectrometry for the characterization of complex monoclonal antibody products. Journal of Separation Science, 2022, 45, 1997-2007.                                                         | 1.3 | 8         |
| 117 | Investigating the secondary interactions of packing materials for size-exclusion chromatography of therapeutic proteins. Journal of Chromatography A, 2022, 1676, 463262.                                                                            | 1.8 | 8         |
| 118 | Aptamer-based immunoaffinity LC-MS using an ultra-short column for rapid attomole level<br>quantitation of intact mAbs. Journal of Chromatography B: Analytical Technologies in the Biomedical<br>and Life Sciences, 2021, 1173, 122694.             | 1.2 | 7         |
| 119 | Influence of connection tubing in modern size exclusion chromatography and its impact on the characterization of mAbs. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 22-32.                                                          | 1.4 | 5         |
| 120 | Practical considerations on the particle size and permeability of ion-exchange columns applied to biopharmaceutical separations. Journal of Chromatography A, 2019, 1604, 460487.                                                                    | 1.8 | 5         |
| 121 | Apparent efficiency of serially coupled columns in gradient elution liquid chromatography: Extension to the combination of any column formats. Journal of Chromatography A, 2019, 1588, 159-162.                                                     | 1.8 | 5         |
| 122 | Development of a Fast and Robust UHPLC Method for Apixaban In-Process Control Analysis. Molecules, 2021, 26, 3505.                                                                                                                                   | 1.7 | 5         |
| 123 | Algorithms to optimize multi-column chromatographic separations of proteins. Journal of Chromatography A, 2021, 1637, 461838.                                                                                                                        | 1.8 | 1         |
| 124 | Empirical correction of non-linear pH gradients and a tool for application to protein ion exchange chromatography. Journal of Chromatography A, 2021, 1651, 462320.                                                                                  | 1.8 | 1         |