Giovanni Poli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5915792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid-mediated decarboxylative C–H coupling between arenes and <i>O</i> -allyl carbamates. Organic Chemistry Frontiers, 2022, 9, 1711-1718.	2.3	6
2	Synthesis of 2,6-Dimethyltyrosine-Like Amino Acids through Pinacolinamide-Enabled C–H Dimethylation of 4-Dibenzylamino Phenylalanine. Journal of Organic Chemistry, 2022, 87, 2580-2589.	1.7	1
3	Redox-Neutral Ru(0)-Catalyzed Alkenylation of 2-Carboxaldimine-heterocyclopentadienes. Journal of Organic Chemistry, 2022, 87, 4640-4648.	1.7	10
4	C(sp ²)â^`Si Bond Functionalization through Intramolecular Activation by Alkoxides. European Journal of Organic Chemistry, 2021, 2021, 1055-1071.	1.2	14
5	Oxoammoniumâ€Mediated AllyIsilane–Ether Coupling Reaction. European Journal of Organic Chemistry, 2021, 2021, 2162-2168.	1.2	8
6	Catalytic Domino Annulations through η ³ â€Allylpalladium Chemistry: A Neverâ€Ending Story. European Journal of Inorganic Chemistry, 2020, 2020, 942-961.	1.0	17
7	Intramolecular Aminoazidation of Unactivated Terminal Alkenes by Palladium-Catalyzed Reactions with Hydrogen Peroxide as the Oxidant. Organic Letters, 2020, 22, 1402-1406.	2.4	31
8	Palladium-catalyzed allylic substitution between C-based nucleophiles and 6-azabicyclo[3.1.0]-hex-3-en-2-oxy derivatives: A new selectivity paradigm. Tetrahedron, 2020, 76, 131182.	1.0	6
9	First Zinc Bromide Promoted Annulative Domino Reactions between Enamines and Cyclic Morita–Baylis–Hillman Alcohols: Synthesis of N,O-Ketals. Synlett, 2020, 31, 1282-1286.	1.0	1
10	Ruâ€Catalyzed Carbonylative Murai Reaction: Directed C3â€Acylation of Biomassâ€Derived 2â€Formyl Heteroaromatics. Advanced Synthesis and Catalysis, 2020, 362, 2486-2493.	2.1	16
11	Creating Diversity from Biomass: A Tandem Bio/Metal atalysis towards Chemoselective Synthesis of Densely Substituted Furans. ChemSusChem, 2019, 12, 4629-4635.	3.6	23
12	Imidazoleâ€Bridged Tetrameric Group(IV) Heteroleptic Complexes from the Spontaneous Metalâ€Ligand Assembly of a Potentially <i>N</i> ₄ â€Tetradentate Ligand. European Journal of Inorganic Chemistry, 2019, 2019, 4384-4393.	1.0	3
13	Switchable selectivity in Pd-catalyzed [3 + 2] annulations of γ-oxy-2-cycloalkenones with 3-oxoglutarates: C–C/C–C vs C–C/O–C bond formation. Beilstein Journal of Organic Chemistry, 2019, 15, 1107-1115.	1.3	5
14	Comment on "Zemplén transesterification: a name reaction that has misled us for 90 years―by B. Ren, M. Wang, J. Liu, J. Ge, X. Zhang and H. Dong, Green Chemistry, 2015, 17, 1390–1394. Green Chemistry, 2018, 20, 2392-2394.	4.6	1
15	Pd-Catalyzed Direct C–H Alkenylation and Allylation of Azine <i>N</i> -Oxides. Organic Letters, 2018, 20, 2346-2350.	2.4	34
16	Rutheniumâ€Catalyzed Câ€H Arylation and Alkenylation of Furfural Imines with Boronates. European Journal of Organic Chemistry, 2018, 2018, 6101-6106.	1.2	21
17	Palladium-Catalyzed [3 + 2]-C–C/N–C Bond-Forming Annulation. Organic Letters, 2018, 20, 4057-4061.	2.4	18
18	(Diacyloxyiodo)benzenesâ€Driven Palladiumâ€Catalyzed Cyclizations of Unsaturated <i>N</i> â€Sulfonylamides: Opportunities of Path Selection. Advanced Synthesis and Catalysis, 2017, 359, 623-628.	2.1	17

#	Article	IF	CITATIONS
19	Approach to ferrocenyl-podophyllotoxin analogs and their evaluation as anti-tumor agents. Journal of Organometallic Chemistry, 2017, 839, 83-90.	0.8	19
20	Palladium(0) Nanoparticles Embedded in Core–shell Nanogels as Recoverable Catalysts for the Mizoroki–Heck Reaction. ChemCatChem, 2017, 9, 2167-2175.	1.8	19
21	Direct palladium-catalyzed allylic alkylations of alcohols with enamines: Synthesis of homoallyl ketones. Tetrahedron Letters, 2017, 58, 2525-2529.	0.7	11
22	Murai Reaction on Furfural Derivatives Enabled by Removable <i>N</i> , <i>N</i> ′â€Bidentate Directing Groups. Chemistry - A European Journal, 2017, 23, 8385-8389.	1.7	30
23	Analogues of the 2-carboxyl-6-hydroxyoctahydroindole (CHOI) unit from diverging Pd-catalyzed allylations: Selectivity as a function of the double bond position. Tetrahedron Letters, 2017, 58, 4174-4178.	0.7	9
24	Metal-catalyzed C H activation/functionalization: The fundamentals. Journal of Molecular Catalysis A, 2017, 426, 275-296.	4.8	235
25	Dehydrogenative Allylic Aminations of But-3-enoic Acid Derivatives. Synthesis, 2016, 48, 3400-3412.	1.2	8
26	Palladium catalyzed oxidative aminations and oxylations: where are we?. Pure and Applied Chemistry, 2016, 88, 381-389.	0.9	12
27	tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon–Nitrogen Bond Forming Reactions. Chimia, 2016, 70, 84.	0.3	10
28	Opening the Way to Catalytic Aminopalladation/Proxicyclic Dehydropalladation: Access to Methylidene Î ³ -Lactams. Organic Letters, 2016, 18, 1020-1023.	2.4	16
29	Mechanistic Study of the Direct Intramolecular Allylic Amination Reaction Catalyzed by Palladium(II). ACS Catalysis, 2016, 6, 1772-1784.	5.5	21
30	Ruthenium atalyzed Hydroamination of Aminoallenes: an Approach to Vinyl Substituted Heterocycles. Advanced Synthesis and Catalysis, 2015, 357, 677-682.	2.1	21
31	Dichotomous Reaction Pathways for the Oxidative Palladium(II)-Catalyzed Intramolecular Acyloxylation of Alkenes. Synlett, 2015, 26, 2237-2242.	1.0	8
32	Microwave-Assisted Palladium-Catalyzed Allylation of β-Enaminones. Synlett, 2014, 25, 2196-2200.	1.0	9
33	Microwave-Assisted Palladium-Catalyzed Allylation of Î ² -Enaminones. Synlett, 2014, 25, e3-e3.	1.0	0
34	Regioselective <i>S</i> -allylation of thiols with cyclic Baylis–Hillman acetates. Journal of Sulfur Chemistry, 2014, 35, 128-136.	1.0	8
35	Direct Allylic Functionalization Through Pdâ€Catalyzed C–H Activation. European Journal of Organic Chemistry, 2014, 2014, 5863-5883.	1.2	132
36	Dormant versus Evolving Aminopalladated Intermediates: Toward a Unified Mechanistic Scenario in Pd ^{II} â€Catalyzed Aminations. Chemistry - A European Journal, 2014, 20, 1539-1546.	1.7	30

#	Article	IF	CITATIONS
37	Synthesis of 1,4-benzodiazepinones via palladium-catalysed allene carbopalladation/amination domino sequence. Journal of Organometallic Chemistry, 2014, 760, 149-155.	0.8	19
38	Synthesis of γ-Lactams and γ-Lactones via Intramolecular Pd-Catalyzed Allylic Alkylations. Accounts of Chemical Research, 2014, 47, 3439-3447.	7.6	78
39	Reactivity of tert-butanesulfinamides in palladium-catalyzed allylic substitutions. Journal of Organometallic Chemistry, 2014, 760, 124-129.	0.8	12
40	Palladium-Catalyzed Arylic/Allylic Aminations: Permutable Domino Sequences for the Synthesis of Dihydroquinolines from Morita–Baylis–Hillman Adducts. Organic Letters, 2013, 15, 3050-3053.	2.4	22
41	Versatile Postâ€functionalization of Polyoxometalate Platforms By Using An Unprecedented Range of Palladiumâ€Catalyzed Coupling Reactions. Chemistry - A European Journal, 2013, 19, 12607-12612.	1.7	20
42	A General and Efficient Method for the Alkoxycarbonylation of α hloro Ketones. Advanced Synthesis and Catalysis, 2012, 354, 3105-3114.	2.1	18
43	Pd-catalyzed domino carbonylative–decarboxylative allylation: an easy and selective monoallylation of ketones. Chemical Communications, 2012, 48, 5889.	2.2	24
44	Dual reactivity of O-α-allenyl esters under palladium(0) catalysis: From carbopalladation/allylic alkylation domino sequence to decarboxylative allenylation. Journal of Organometallic Chemistry, 2012, 714, 53-59.	0.8	8
45	Transitionâ€Metalâ€Catalyzed Hydroamination and Carboamination Reactions of Anthranilic Allenamides as a Route to 2â€Vinyl―and 2â€{αâ€&tyryl)quinazolinâ€4â€one Derivatives. European Journal of Organic Chen 2012, 2012, 3617-3624.	nis try ,	44
46	Straightforward Synthesis of Allylated Keto Esters: The Palladium atalysed Haloketone Alkoxycarbonylation/ Allylation Domino Reaction. Advanced Synthesis and Catalysis, 2012, 354, 1077-1083.	2.1	21
47	Pdâ€Catalyzed Asymmetric Synthesis of <i>N</i> â€Allenyl Amides and Their Auâ€Catalyzed Cycloisomerizative Hydroalkylation: A New Route Toward Enantioenriched Pyrrolidones. Chemistry - A European Journal, 2012, 18, 3840-3844.	1.7	51
48	Functionalized 2,3-dihydrofurans via palladium-catalyzed oxyarylation of α-allyl-β-ketoesters. Organic and Biomolecular Chemistry, 2011, 9, 8233.	1.5	8
49	Selectivity in Palladium-Catalyzed Allylic Substitution. Topics in Organometallic Chemistry, 2011, , 1-63.	0.7	42
50	Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling. Chemical Communications, 2011, 47, 9206.	2.2	57
51	γ―and δ‣actams through Palladiumâ€Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMR Investigation, and DFT Rationalization. Chemistry - A European Journal, 2011, 17, 2885-2896.	1.7	36
52	Palladium atalyzed Allylic Sulfinylation and the Mislow–Braverman–Evans Rearrangement. Chemistry - A European Journal, 2011, 17, 13963-13965.	1.7	5
53	Palladium-Catalyzed Aromatic Sulfonylation: A New Catalytic Domino Process Exploiting in situ Generated Sulfinate Anions. Synlett, 2011, 2011, 2943-2946.	1.0	9
54	Striking AcOH Acceleration in Direct Intramolecular Allylic Amination Reactions. Chemistry - A European Journal, 2010, 16, 1414-1414.	1.7	1

#	Article	IF	CITATIONS
55	Can Heteroâ€Polysubstituted Cyclodextrins be Considered as Inherently Chiral Concave Molecules?. Angewandte Chemie - International Edition, 2010, 49, 2314-2318.	7.2	42
56	An escapade in the world of sulfenate anions: generation, reactivity and applications in domino processes. Tetrahedron: Asymmetry, 2010, 21, 1075-1084.	1.8	46
57	Palladium-catalyzed intramolecular allylic alkylation of α-sulfinyl carbanions: a new asymmetric route to enantiopure γ-lactams. Tetrahedron Letters, 2010, 51, 1459-1461.	0.7	18
58	Aryl Sulfoxides from Allyl Sulfoxides via [2,3]-Sigmatropic Rearrangement and Domino Pd-Catalyzed Generation/Arylation of Sulfenate Anions. Organic Letters, 2010, 12, 320-323.	2.4	72
59	Enantioselective γ-Lactam Synthesis via Palladium-Catalyzed Intramolecular Asymmetric Allylic Alkylation. Synlett, 2009, 2009, 1441-1444.	1.0	3
60	Phosphineâ€Free Palladiumâ€Catalyzed Allene Carbopalladation/Allylic Alkylation Domino Sequence: A New Route to 4â€{αâ€Styryl) γâ€Lactams. Chemistry - A European Journal, 2009, 15, 4224-4227.	1.7	33
61	Striking AcOH Acceleration in Direct Intramolecular Allylic Amination Reactions. Chemistry - A European Journal, 2009, 15, 11078-11082.	1.7	94
62	Inside Cover: Striking AcOH Acceleration in Direct Intramolecular Allylic Amination Reactions (Chem.) Tj ETQq0 C	0 0 _[gBT /C	verlock 10 Tf
63	A New Cross-Coupling-Based Synthesis of Carpanone. Organic Letters, 2009, 11, 4378-4381.	2.4	22
64	Pseudo-domino palladium-catalyzed allylic alkylation/Mizoroki–Heck coupling reaction: a key sequence toward (±)-podophyllotoxin. Tetrahedron Letters, 2008, 49, 760-763.	0.7	27
65	New Picropodophyllin Analogs via Palladium-Catalyzed Allylic Alkylationâ~'Hiyama Cross-Coupling Sequences. Journal of Organic Chemistry, 2008, 73, 5795-5805.	1.7	36
66	Allylic Alkylation and Ring-Closing Metathesis in Sequence:  A Successful Cohabitation of Pd and Ru. Organic Letters, 2008, 10, 405-408.	2.4	60

67	N-Substituted Tetronamides as Ambident Nucleophilic Building Blocks for the Synthesis of New 4-Aza-2,3-didehydropodophyllotoxins. Synlett, 2008, 2008, 1475-1478.	1.0	12
68	New Access to Kainic Acid via Intramolecular Palladium-Catalyzed Allylic Alkylation. Synlett, 2007, 2007, 1521-1524.	1.0	3
69	Hydroxylamine Oxygen as Nucleophile in Palladium(0)- and Palladium(II)-Catalyzed Allylic Alkylation: A Novel Access to Isoxazolidines. Synlett, 2007, 2007, 0944-0948.	1.0	18
70	Enantioselective Synthesis of Aryl Sulfoxides via Palladium-Catalyzed Arylation of Sulfenate Anions. Organic Letters, 2007, 9, 5493-5496.	2.4	97
71	Oxidative Addition of Ligand-Chelated Palladium(0) to Aryl Halides:Â Comparison between 1,2-Bisthioethers and 1,2-Bisphosphines. Organometallics, 2007, 26, 455-458.	1.1	7
72	Preparation of Allyl Sulfoxides by Palladium-Catalyzed Allylic Alkylation of Sulfenate Anions. Journal	1.7	47

of Organic Chemistry, 2006, 71, 7449-7454.

#	Article	IF	CITATIONS
73	Aryl Sulfoxides via Palladium-Catalyzed Arylation of Sulfenate Anions. Organic Letters, 2006, 8, 5951-5954.	2.4	101
74	Synthesis of 3,5-Disubstituted Piperazinones via Palladium(II)-Catalyzed Amination. Synlett, 2006, 2006, 2133-2135.	1.0	2
75	Palladium-Catalyzed Allylic Alkylation of α-Sulfinyl Carbanions under ÂBiphasic Conditions. Synlett, 2006, 2006, 1055-1058.	1.0	1
76	A Palladium-Catalyzed Sequence of Allylic Alkylation and Hiyama Cross-Coupling: Convenient Synthesis of 4-(α-Styryl) γ-Lactones. Synlett, 2006, 2006, 2231-2234.	1.0	3
77	New Enantiopure Bis(thioether) and Bis(sulfoxide) Ligands from Benzothiophene. European Journal of Organic Chemistry, 2005, 2005, 552-557.	1.2	30
78	Surprisingly Mild "Enolate-Counterion-Free―Pd(0)-Catalyzed Intramolecular Allylic Alkylations ChemInform, 2005, 36, no.	0.1	0
79	Surprisingly Mild "Enolate-Counterion-Free―Pd(0)-Catalyzed Intramolecular Allylic Alkylations. Organic Letters, 2005, 7, 995-998.	2.4	48
80	Pyrrolizidine Alkaloids by Intramolecular Palladium-Catalysed Allylic Alkylation: Synthesis of (A±)-Isoretronecanol. European Journal of Organic Chemistry, 2004, 2004, 2840-2847.	1.2	30
81	Diastereoselective Preparation of Silylated Pyrrolidones through Palladium-Catalysed Cyclisations. European Journal of Organic Chemistry, 2003, 2003, 2702-2708.	1.2	12
82	Palladium-Catalyzed Cyclization of Allylsilanes with Nucleophilic Displacement of the Silyl Group. ChemInform, 2003, 34, no.	0.1	0
83	A New Access to 3,5-Disubstituted Piperazinones via Pd(0)-Catalyzed Amination ChemInform, 2003, 34, no.	0.1	0
84	Diastereoselective Preparation of Silylated Pyrrolidones Through Palladium-Catalyzed Cyclizations ChemInform, 2003, 34, no.	0.1	0
85	A new access to 3,5-disubstituted piperazinones via Pd(0)-catalyzed amination. Tetrahedron Letters, 2003, 44, 4213-4216.	0.7	11
86	Rationalizing Ring-Size Selectivity in Intramolecular Pd-Catalyzed Allylations of Resonance-Stabilized Carbanions. Organometallics, 2003, 22, 1849-1855.	1.1	21
87	Palladium-catalyzed pseudo-domino cyclizations. Journal of Organometallic Chemistry, 2003, 687, 291-300.	0.8	20
88	Alkylation of Active Methylenes via Benzhydryl Cations. Synlett, 2002, 2002, 1823-1826.	1.0	9
89	An Epiisopicropodophyllin Aza Analogue via Palladium-Catalyzed Pseudo-Domino Cyclization. Journal of Organic Chemistry, 2002, 67, 9456-9459.	1.7	97
90	Pd(0)-catalyzed allylic alkylation/Heck coupling in domino sequence. Tetrahedron Letters, 2001, 42, 5179-5182.	0.7	22

#	Article	IF	CITATIONS
91	Silylated pyrrolidones via diastereoselective Pd-catalysed intramolecular allylic alkylations. Tetrahedron Letters, 2001, 42, 6287-6289.	0.7	19
92	Palladium in Organic Synthesis: Fundamental Transformations and Domino Processes. Tetrahedron, 2000, 56, 5959-5989.	1.0	298
93	Palladium-Catalyzed Allylic Alkylations via Titanated Nucleophiles:  A New Earlyâ``Late Heterobimetallic System. Journal of Organic Chemistry, 1999, 64, 2962-2965.	1.7	21
94	Stannylcupration of chiral γ-amino acetylenic esters: Stereocontrolled synthesis of 3-tributylstannyl γ-amino (E)-alkenoates a as precursors of 4-stannylated pyrrolinones. Tetrahedron, 1998, 54, 10227-10238.	1.0	18
95	A new asymmetric approach toward 5-substituted pyrrolidin-2-one derivatives. Tetrahedron, 1998, 54, 10403-10418.	1.0	24
96	Kinetic resolution of racemic alkoxy oxiranes by chiral lithium amides. Tetrahedron: Asymmetry, 1998, 9, 2293-2299.	1.8	19
97	A New Palladium-Catalyzed Intramolecular Allylation to Pyrrolidin-2-ones1. Journal of Organic Chemistry, 1998, 63, 804-807.	1.7	44
98	Palladium Catalyzed Alkylation with Allylic Acetates under Neutral Conditions. Journal of Organic Chemistry, 1998, 63, 9608-9609.	1.7	56
99	A Selective Access to Amino Hydroxy Oxetanes. Journal of Organic Chemistry, 1997, 62, 8557-8559.	1.7	24
100	Diastereoselective addition of metal-coordinated and "naked―nucleophilic reagents to norephedrine derived 2-acyl-N-tosyl-oxazolidines. Tetrahedron, 1997, 53, 1759-1776.	1.0	12
101	A new stereoselective synthesis of chiral γ-functionalized (E)-allylic amines. Tetrahedron, 1996, 52, 10985-10996.	1.0	49
102	A new asymmetric approach towards 2-pyrrolidinones and pyrrolidines: Simple versus double stereodifferentiation. Tetrahedron Letters, 1995, 36, 8669-8672.	0.7	17
103	Diastereoselective Addition of Organometallic Reagents to Nor-Ephedrine-Derived 2-Acyl-N-Tosyl-Oxazolidines. Synlett, 1995, 1995, 71-73.	1.0	11
104	A conformational study of N-tosyl oxazolidines using molecular mechanics and crystallography. Journal of Molecular Structure, 1994, 318, 189-202.	1.8	17
105	Stereoselective radical-mediated cyclization of norephedrine derived o-bromobenzamides: Enantioselective synthesis of 4-substituted 1,2,3,4-tetrahydroisoquinolines. Tetrahedron: Asymmetry, 1993, 4, 273-280.	1.8	25
106	The first asymmetric synthesis of enantiopure .alphasulfenyl dithioacetals and .alphasulfenyl aldehydes. Journal of Organic Chemistry, 1993, 58, 3165-3168.	1.7	33
107	Asymmetric Synthesis of Enantiopure α-Sulfenyl Dithioacetals and α-Sulfenyl Aldehydes. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 74, 381-382.	0.8	3
108	Stereoselective Reduction of 2-Methylacetoacetaldehydes Protected as Norephedrine-Derived Oxazolidines: A New Access to Enantiomerically Pure "Propanal-Type" Aldols. Synlett, 1992, 1992, 93-95.	1.0	12

#	Article	IF	CITATIONS
109	Diastereoselective addition of metal-coordinated and â€~naked' tri-sec-butylborohydrides to a norephedrine-derived 2-acetyloxazolidine. Journal of the Chemical Society Chemical Communications, 1992, , 1027-1029.	2.0	26
110	Stereoselective radical-mediated cyclization of norephdrine derived α-iodoamides: synthesis of enantiopure pyrrolidines and trandition state modelling1. Tetrahedron, 1992, 48, 3945-3960.	1.0	32
111	Norephedrine derived oxazolidines as chiral acylating agents: An NMR study of the intermediate cations Tetrahedron, 1992, 48, 1343-1352.	1.0	16
112	Stereoselective Michael additions of titanium "ate―complexes of ketone and ester enolates. Tetrahedron, 1992, 48, 5597-5606.	1.0	15
113	Polyacrylamide gel polymerization under non-oxidizing conditions, as monitored by capillary zone electrophoresis. Journal of Chromatography A, 1992, 598, 287-297.	1.8	19
114	Structure of N,N',N''-triphenylbiuret. Acta Crystallographica Section C: Crystal Structure Communications, 1992, 48, 2013-2016.	0.4	8
115	Addition of racemic alkoxyallylstannanes to an enantiomerically pure 2-methoxyoxazolidine: an example of combined mutual diastereoface selection and kinetic resolution. Journal of Organic Chemistry, 1991, 56, 6961-6963.	1.7	16
116	Asymmetric hydrogenation of 3-methyl-fumaric and maleic ester monoaldehydes protected as neph-derived oxazolidines. Tetrahedron, 1991, 47, 7357-7362.	1.0	14
117	Highly stereoselective acetylations via norephedrine derived oxazolidines Tetrahedron, 1991, 47, 7925-7936.	1.0	15
118	Stereoselective radical-mediated cyclization of norephedrine derived α-iodoamides: Experiments and TS-modelling. Tetrahedron: Asymmetry, 1991, 2, 793-796.	1.8	16
119	Stereoconvergent crotylstannane addition to nor-ephedrine-derived 2-methoxy oxazolidines. A clue towards a synclinal transition state geometry. Tetrahedron: Asymmetry, 1990, 1, 429-432.	1.8	18
120	Electrophilic α-formylation of carbonyl compounds using nor-ephedrine-derived 2-metohoxy oxazolidines. A novel asymmetric formation of quaternary stereocenters. Tetrahedron Letters, 1990, 31, 4223-4226.	0.7	29
121	Asymmetric 1,4-additions of gilman reagents to α,β - disubstitoted (e)-enoylsultams / "enolate― protonations. Tetrahedron, 1989, 45, 479-488.	1.0	72
122	The osmylation of flexible 3-substituted cyclopentenes. Tetrahedron Letters, 1989, 30, 7385-7388.	0.7	66
123	Allylic stereocenter directed asymmetric conjugate addition of cuprates in the presence of trimethylchlorosilane. enantioselective synthesis of 2-alkyl-4-benzyioxybutanal and 2-alkyl-4-oxopentanal. Tetrahedron, 1988, 44, 5929-5938.	1.0	28
124	Enantioselective synthesis and absolute configuration of (â^')-pulo'upone by asymmetric intramolecular diels-alder reaction. Tetrahedron Letters, 1988, 29, 5885-5888.	0.7	64
125	Stable and reactive conformations of N-enoyl-bornane-10.2-sultams in the absence of lewis acids : asymmetric 1.4-hydride additions. Tetrahedron Letters, 1988, 29, 3559-3562.	0.7	68
126	Norephedrine-derived 2-alkenyloxazolidines: stereochemistry of cyclization and allylic stereocenter directed asymmetric conjugate addition. Journal of Organic Chemistry, 1988, 53, 1600-1607.	1.7	89

#	Article	IF	CITATIONS
127	Magnesium bromide-promoted addition of heterosubstituted methylketene silyl acetals to alkoxy aldehydes. Diastereoselective synthesis of 3,4-syn-2-methylene- and 2-(alkoxymethyl)-3-hydroxy-4-alkoxy esters. Journal of Organic Chemistry, 1987, 52, 888-891.	1.7	34
128	Absolute configuration of A-32'287 [conocandin] and total synthesis of its methyl and tert-butyl esters. Journal of Organic Chemistry, 1987, 52, 5452-5457.	1.7	14
129	Asymmetric Induction at C(?) and C(?) ofN-Enoylsultams by Organomagnesium 1,4-Addition/Enolate Trapping. Helvetica Chimica Acta, 1987, 70, 2201-2214.	1.0	110
130	Allylic stereocenter directed asymmetric conjugate addition. Enantioselective synthesis of 3-alkylsuccinaldehydic acid methyl esters. Journal of Organic Chemistry, 1986, 51, 5041-5043.	1.7	36
131	Novel derivatives of 3α,7α-dihydroxy-5β-cholan-24-OIC acid (chenodeoxycholic acid) and 3α,7β-dihydroxy-5β-cholan-24-OIC acid (ursodeoxycholic acid). Steroids, 1986, 47, 41-48.	0.8	7
132	Asymmetric induction at C(β) and C(α) of N-enoyl sultams by 1,4-hydride addition/enolate trapping. Tetrahedron Letters, 1986, 27, 4717-4720.	0.7	63
133	Asymetric dihydroxylations via chiral oxazolidines. Tetrahedron Letters, 1985, 26, 5459-5462.	0.7	39
134	Lewis acid promoted aldol additions of α-thiosilylketeneacetals to α-alkoxy aldehydes: diastereoselective synthesis of -α-methylene-β-hydroxy-â^,-alkoxy esters Tetrahedron Letters, 1985, 26, 6509-6512.	0.7	16
135	Stereoselective aldol additions to α-alkoxy aldehydes using thioester silyl ketene acetals,. Tetrahedron Letters, 1985, 26, 2373-2376.	0.7	27
136	Double stereoselection in the aldol-type synthesis of γ-methyl and γ-alkoxy β-hydroxy ketones mediated by α-sulphinyl hydrazones. Journal of the Chemical Society Perkin Transactions 1, 1985, , 255-259.	0.9	5
137	Chiral α-sulphinyl hydrazones as effective reagents for stereoselective aldol-type condensation. Journal of the Chemical Society Perkin Transactions 1, 1985, , 251-254.	0.9	12
138	Synthetic opportunities offered by anti .alphamethylenebetahydroxygammaalkoxy esters: stereoselective reactions at the double bond. Journal of Organic Chemistry, 1985, 50, 4442-4447.	1.7	48
139	Enantioselective Synthesis of (-)-(R)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone [(-)-(R)-[6]-Gingerol]. Synthesis, 1984, 1984, 702-703.	1.2	13
140	Enolboronates: New practical reagents for regioselective aldol condensations Tetrahedron Letters, 1984, 25, 2279-2282.	0.7	24
141	Enantionselective aldol-type condensation mediated by chiral α-sulphinyl hydrazones. Journal of the Chemical Society Chemical Communications, 1983, , 403-404.	2.0	8
142	Biosynthesis of austdiol and synthesis of a deuterium labelled biogenetic precursor. Journal of the Chemical Society Perkin Transactions 1, 1983, , 2745.	0.9	2
143	Enantioselective synthesis of secondary alcohols in the presence of chiral ligands. Tetrahedron, 1982, 38, 2725-2727.	1.0	40
144	C3–H Silylation of Furfural Derivatives: Direct Access to a Versatile Synthetic Platform Derived from Biomass. Asian Journal of Organic Chemistry, 0, , .	1.3	3