Adam Skarka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5915598/publications.pdf

Version: 2024-02-01

759233 642732 24 533 12 23 h-index citations g-index papers 24 24 24 876 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alisertib shows negligible potential for perpetrating pharmacokinetic drug-drug interactions on ABCB1, ABCG2 and cytochromes P450, but acts as dual-activity resistance modulator through the inhibition of ABCC1 transporter. Toxicology and Applied Pharmacology, 2022, 434, 115823.	2.8	9
2	Pyridinium-2-carbaldoximes with quinolinium carboxamide moiety are simultaneous reactivators of acetylcholinesterase and butyrylcholinesterase inhibited by nerve agent surrogates. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 437-449.	5.2	4
3	Silencing of E-cadherin expression leads to increased chemosensitivity to irinotecan and oxaliplatin in colorectal cancer cell lines. Human and Experimental Toxicology, 2021, 40, 096032712110214.	2.2	5
4	Tepotinib Inhibits Several Drug Efflux Transporters and Biotransformation Enzymes: The Role in Drug-Drug Interactions and Targeting Cytostatic Resistance In Vitro and Ex Vivo. International Journal of Molecular Sciences, 2021, 22, 11936.	4.1	7
5	Ensartinib (X-396) Effectively Modulates Pharmacokinetic Resistance Mediated by ABCB1 and ABCG2 Drug Efflux Transporters and CYP3A4 Biotransformation Enzyme. Cancers, 2020, 12, 813.	3.7	20
6	Novel cholinesterase reactivators., 2020, , 1161-1177.		0
7	The Evaluation of Glioblastoma Cell Dissociation and Its Influence on Its Behavior. International Journal of Molecular Sciences, 2019, 20, 4630.	4.1	7
8	Carbonyl Reduction of Flubendazole in the Human Liver: Strict Stereospecificity, Sex Difference, Low Risk of Drug Interactions. Frontiers in Pharmacology, 2019, 10, 600.	3 . 5	6
9	Pyridinium Oximes with <i>Ortho</i> -Positioned Chlorine Moiety Exhibit Improved Physicochemical Properties and Efficient Reactivation of Human Acetylcholinesterase Inhibited by Several Nerve Agents. Journal of Medicinal Chemistry, 2018, 61, 10753-10766.	6.4	45
10	Reductive metabolism of tiaprofenic acid by the human liver and recombinant carbonyl reducing enzymes. Chemico-Biological Interactions, 2017, 276, 121-126.	4.0	2
11	The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. Biomedicine and Pharmacotherapy, 2017, 95, 828-836.	5.6	56
12	The Effects of Selected Sesquiterpenes from Myrica rubra Essential Oil on the Efficacy of Doxorubicin in Sensitive and Resistant Cancer Cell Lines. Molecules, 2017, 22, 1021.	3.8	26
13	Essential Oil from Myrica rubra Leaves Potentiated Antiproliferative and Prooxidative Effect of Doxorubicin and its Accumulation in Intestinal Cancer Cells. Planta Medica, 2016, 82, 89-96.	1.3	9
14	Human DHRS7, promising enzyme in metabolism of steroids and retinoids?. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155, 112-119.	2.5	17
15	The Influence of Sesquiterpenes from Myrica rubra on the Antiproliferative and Pro-Oxidative Effects of Doxorubicin and Its Accumulation in Cancer Cells. Molecules, 2015, 20, 15343-15358.	3.8	50
16	Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases. Biochemical Pharmacology, 2015, 96, 168-178.	4.4	22
17	Molecular and biochemical characterisation of human short-chain dehydrogenase/reductase member 3 (DHRS3). Chemico-Biological Interactions, 2015, 234, 178-187.	4.0	13
18	Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3. Toxicology and Applied Pharmacology, 2014, 278, 238-248.	2.8	59

#	Article	IF	CITATION
19	Purification and reconstitution of human membrane-bound DHRS7 (SDR34C1) from Sf9 cells. Protein Expression and Purification, 2014, 95, 44-49.	1.3	8
20	Isoquinoline alkaloids as a novel type of AKR1C3 inhibitors. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 250-258.	2.5	27
21	Hydroxysteroid dehydrogenases (HSDs) in bacteria – A bioinformatic perspective. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 31-46.	2.5	94
22	Anthracyclines and their metabolism in human liver microsomes and the participation of the new microsomal carbonyl reductase. Chemico-Biological Interactions, 2011, 191, 66-74.	4.0	29
23	Enzyme Stereospecificity as a Powerful Tool in Searching for New Enzymes. Current Drug Metabolism, 2010, 11, 547-559.	1.2	6
24	Partial purification and characterization of a new human membrane-bound carbonyl reductase playing a role in the deactivation of the anticancer drug oracin. Toxicology, 2009, 264, 52-60.	4.2	12