## James M Lazorchak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5915169/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8897-8901.                               | 7.1  | 1,669     |
| 2  | Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?.<br>Environmental Health Perspectives, 2012, 120, 1221-1229.                                                    | 6.0  | 1,033     |
| 3  | Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment. Environmental Health Perspectives, 2013, 121, 878-885.                                      | 6.0  | 657       |
| 4  | Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environmental Toxicology and Chemistry, 2016, 35, 6-13.                               | 4.3  | 380       |
| 5  | Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environmental Pollution, 2014, 184, 354-359.          | 7.5  | 372       |
| 6  | HEAVY METALS STRUCTURE BENTHIC COMMUNITIES IN COLORADO MOUNTAIN STREAMS. , 2000, 10, 626-638.                                                                                                              |      | 326       |
| 7  | Endocrine disrupting chemicals in fish: Developing exposure indicators and predictive models of effects based on mechanism of action. Aquatic Toxicology, 2009, 92, 168-178.                               | 4.0  | 234       |
| 8  | Saving freshwater from salts. Science, 2016, 351, 914-916.                                                                                                                                                 | 12.6 | 232       |
| 9  | Analysis of Ecologically Relevant Pharmaceuticals in Wastewater and Surface Water Using Selective Solid-Phase Extraction and UPLCâ^'MS/MS. Analytical Chemistry, 2008, 80, 5021-5030.                      | 6.5  | 224       |
| 10 | Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms.<br>Environment International, 2015, 85, 189-205.                                                          | 10.0 | 209       |
| 11 | Risks to aquatic organisms posed by human pharmaceutical use. Science of the Total Environment, 2008, 389, 329-339.                                                                                        | 8.0  | 179       |
| 12 | Differential Gene Expression in <i>Daphnia magna</i> Suggests Distinct Modes of Action and<br>Bioavailability for ZnO Nanoparticles and Zn Ions. Environmental Science & Technology, 2011, 45,<br>762-768. | 10.0 | 176       |
| 13 | Toxicogenomic Responses of Nanotoxicity in <i>Daphnia magna</i> Exposed to Silver Nitrate and Coated Silver Nanoparticles. Environmental Science & amp; Technology, 2012, 46, 6288-6296.                   | 10.0 | 159       |
| 14 | Identification of Metabolites of Trenbolone Acetate in Androgenic Runoff from a Beef Feedlot.<br>Environmental Health Perspectives, 2006, 114, 65-68.                                                      | 6.0  | 152       |
| 15 | The potential of an earthworm avoidance test for evaluation of hazardous waste sites.<br>Environmental Toxicology and Chemistry, 1996, 15, 1532-1537.                                                      | 4.3  | 129       |
| 16 | Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2010, 29, 2742-2750.       | 4.3  | 117       |
| 17 | A reformulated, reconstituted water for testing the freshwater amphipod, <i>Hyalella azteca</i> .<br>Environmental Toxicology and Chemistry, 1997, 16, 1229-1233.                                          | 4.3  | 78        |
| 18 | Perfluorinated compounds in whole fish homogenates from the Ohio, Missouri, and Upper Mississippi<br>Rivers, USA. Environmental Pollution, 2008, 156, 1227-1232.                                           | 7.5  | 76        |

JAMES M LAZORCHAK

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshwater Biology, 2020, 65, 1824-1842.                                                     | 2.4  | 71        |
| 20 | Elemental fish tissue contamination in Northeastern U.S. Lakes: Evaluation of an approach to regional assessment. Environmental Toxicology and Chemistry, 1998, 17, 1875-1884.                                                                 | 4.3  | 69        |
| 21 | Evaluating the extent of pharmaceuticals in surface waters of the United States using a Nationalâ€ <b>s</b> cale<br>Rivers and Streams Assessment survey. Environmental Toxicology and Chemistry, 2016, 35, 874-881.                           | 4.3  | 57        |
| 22 | Persistent organic pollutants in fish tissue in the mid-continental great rivers of the United States.<br>Science of the Total Environment, 2010, 408, 1180-1189.                                                                              | 8.0  | 52        |
| 23 | Influence of Trophic Position and Spatial Location on Polychlorinated Biphenyl (PCB)<br>Bioaccumulation in a Stream Food Web. Environmental Science & Technology, 2008, 42, 2316-2322.                                                         | 10.0 | 51        |
| 24 | Elevated major ion concentrations inhibit larval mayfly growth and development. Environmental<br>Toxicology and Chemistry, 2015, 34, 167-172.                                                                                                  | 4.3  | 51        |
| 25 | Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. Aquatic Toxicology, 2011, 101, 447-458.                                                                            | 4.0  | 50        |
| 26 | Temporal Dynamics of Periphyton Exposed to Tetracycline in Stream Mesocosms. Environmental<br>Science & Technology, 2011, 45, 10684-10690.                                                                                                     | 10.0 | 49        |
| 27 | Interlaboratory study of precision: <i>Hyalella azteca</i> and <i>Chironomus tentans</i> freshwater sediment toxicity assays. Environmental Toxicology and Chemistry, 1996, 15, 1335-1343.                                                     | 4.3  | 48        |
| 28 | Altered gene expression in the brain and ovaries of zebrafish ( <i>Danio Rerio</i> ) exposed to the aromatase inhibitor fadrozole: Microarray analysis and hypothesis generation. Environmental Toxicology and Chemistry, 2009, 28, 1767-1782. | 4.3  | 48        |
| 29 | Assessing Impacts of Land-Applied Manure from Concentrated Animal Feeding Operations on Fish<br>Populations and Communities. Environmental Science & Technology, 2012, 46, 13440-13447.                                                        | 10.0 | 48        |
| 30 | Contamination of fish in streams of the Midâ€Atlantic Region: An approach to regional indicator selection and wildlife assessment. Environmental Toxicology and Chemistry, 2003, 22, 545-553.                                                  | 4.3  | 47        |
| 31 | Effects of a chronic lower range of triclosan exposure on a stream mesocosm community.<br>Environmental Toxicology and Chemistry, 2013, 32, 2874-2887.                                                                                         | 4.3  | 45        |
| 32 | Studies on bioremediation of polycyclic aromatic hydrocarbonâ€contaminated sediments:<br>Bioavailability, biodegradability, and toxicity issues. Environmental Toxicology and Chemistry, 2003,<br>22, 473-482.                                 | 4.3  | 44        |
| 33 | Part 2: Sensitivity comparisons of the mayfly Centroptilum triangulifer to Ceriodaphnia dubia and<br>Daphnia magna using standard reference toxicants; NaCl, KCl and CuSO4. Chemosphere, 2015, 139,<br>597-603.                                | 8.2  | 44        |
| 34 | In some places, in some cases, and at some times, harmful algal blooms are the greatest threat to inland water quality. Environmental Toxicology and Chemistry, 2017, 36, 1125-1127.                                                           | 4.3  | 43        |
| 35 | The effects of elevated metals on benthic community metabolism in a rocky mountain stream.<br>Environmental Pollution, 1997, 95, 183-190.                                                                                                      | 7.5  | 41        |
| 36 | 17αâ€ethynylestradiolâ€induced vitellogenin gene transcription quantified in livers of adult males, larvae,<br>and gills of fathead minnows ( <i>Pimephales promelas</i> ). Environmental Toxicology and Chemistry,<br>2002, 21, 2385-2393.    | 4.3  | 40        |

JAMES M LAZORCHAK

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Reproductive effects in fathead minnows (Pimphales promelas) following a 21Âd exposure to<br>17α-ethinylestradiol. Chemosphere, 2016, 144, 366-373.                                                                                | 8.2  | 40        |
| 38 | Temporal and spatial variability in the estrogenicity of a municipal wastewater effluent.<br>Ecotoxicology and Environmental Safety, 2004, 57, 303-310.                                                                            | 6.0  | 38        |
| 39 | A transcriptomics-based biological framework for studying mechanisms of endocrine disruption in small fish species. Aquatic Toxicology, 2010, 98, 230-244.                                                                         | 4.0  | 35        |
| 40 | Determining the effects of ammonia on fathead minnow (Pimephales promelas) reproduction. Science of the Total Environment, 2012, 420, 127-133.                                                                                     | 8.0  | 35        |
| 41 | Statistical Survey of Persistent Organic Pollutants: Risk Estimations to Humans and Wildlife through<br>Consumption of Fish from U.S. Rivers. Environmental Science & Technology, 2017, 51, 3021-3031.                             | 10.0 | 35        |
| 42 | A computational model of the hypothalamic - pituitary - gonadal axis in female fathead minnows<br>(Pimephales promelas) exposed to 17α-ethynylestradiol and 17β-trenbolone. BMC Systems Biology, 2011, 5,<br>63.                   | 3.0  | 34        |
| 43 | Predicting variability of aquatic concentrations of human pharmaceuticals. Science of the Total Environment, 2010, 408, 4504-4510.                                                                                                 | 8.0  | 32        |
| 44 | Proteomic analysis of a model fish species exposed to individual pesticides and a binary mixture.<br>Aquatic Toxicology, 2011, 101, 196-206.                                                                                       | 4.0  | 29        |
| 45 | 17alpha-ethynylestradiol-induced vitellogenin gene transcription quantified in livers of adult males,<br>larvae, and gills of fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry,<br>2002, 21, 2385-93. | 4.3  | 29        |
| 46 | Toxicity and Transcriptomic Analysis in <i>Hyalella azteca</i> Suggests Increased Exposure and<br>Susceptibility of Epibenthic Organisms to Zinc Oxide Nanoparticles. Environmental Science &<br>Technology, 2013, 47, 9453-9460.  | 10.0 | 28        |
| 47 | A REFORMULATED, RECONSTITUTED WATER FOR TESTING THE FRESHWATER AMPHIPOD, HYALELLA AZTECA.<br>Environmental Toxicology and Chemistry, 1997, 16, 1229.                                                                               | 4.3  | 27        |
| 48 | Mercury Contamination in Fish in Midcontinent Great Rivers of the United States: Importance of<br>Species Traits and Environmental Factors. Environmental Science & Technology, 2010, 44,<br>2947-2953.                            | 10.0 | 26        |
| 49 | Evaluation of the robustness of the fathead minnow, <i>Pimephales promelas</i> , larval survival and growth test, U.S. EPA method 1000.0. Environmental Toxicology and Chemistry, 1995, 14, 653-659.                               | 4.3  | 25        |
| 50 | Evaluation of microsomal and cytosolic biomarkers in a seven-day larval trout sediment toxicity test.<br>Aquatic Toxicology, 1995, 31, 189-202.                                                                                    | 4.0  | 24        |
| 51 | Part 1: Laboratory culture of Centroptilum triangulifer (Ephemeroptera: Baetidae) using a defined diet<br>of three diatoms. Chemosphere, 2015, 139, 589-596.                                                                       | 8.2  | 23        |
| 52 | Evaluation of alternative reference toxicants for use in the earthworm toxicity test. Environmental Toxicology and Chemistry, 1995, 14, 1189-1194.                                                                                 | 4.3  | 22        |
| 53 | Source–sink dynamics sustain central stonerollers ( <i>Campostoma anomalum</i> ) in a heavily<br>urbanized catchment. Freshwater Biology, 2008, 53, 2061-2075.                                                                     | 2.4  | 22        |
| 54 | Development and validation of a <i>Daphnia magna</i> fourâ€day survival and growth test method.<br>Environmental Toxicology and Chemistry, 2009, 28, 1028-1034.                                                                    | 4.3  | 21        |

| #  | Article                                                                                                                                                                                                                                                      | IF                | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 55 | RELATIONSHIPS AMONG EXCEEDENCES OF METALS CRITERIA, THE RESULTS OF AMBIENT BIOASSAYS, AND COMMUNITY METRICS IN MINING-IMPACTED STREAMS. Environmental Toxicology and Chemistry, 2004, 23, 1786.                                                              | 4.3               | 20             |
| 56 | Relationship of microbial activity andCeriodaphnia responses to mining impacts on the Clark Fork<br>River, Montana. Archives of Environmental Contamination and Toxicology, 1987, 16, 523-530.                                                               | 4.1               | 19             |
| 57 | A national statistical survey assessment of mercury concentrations in fillets of fish collected in the<br>U.S. EPA national rivers and streams assessment of the continental USA. Chemosphere, 2015, 122, 52-61.                                             | 8.2               | 19             |
| 58 | Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO. Environmental Pollution, 2018, 239, 706-713.                                               | 7.5               | 19             |
| 59 | Determination of Cyanotoxins and Prymnesins in Water, Fish Tissue, and Other Matrices: A Review.<br>Toxins, 2022, 14, 213.                                                                                                                                   | 3.4               | 19             |
| 60 | Effects of water hardness on skeletal development and growth in juvenile fathead minnows.<br>Aquaculture, 2009, 286, 226-232.                                                                                                                                | 3.5               | 17             |
| 61 | Diploid and triploid African catfish (Clarias gariepinus) differ in biomarker responses to the pesticide chlorpyrifos. Science of the Total Environment, 2016, 557-558, 204-211.                                                                             | 8.0               | 15             |
| 62 | Acute and chronic toxicity of sodium selenate to <i>Daphnia magna</i> straus. Environmental<br>Toxicology and Chemistry, 1983, 2, 239-244.                                                                                                                   | 4.3               | 14             |
| 63 | Effects of eutrophication on vitellogenin gene expression in male fathead minnows (Pimephales) Tj ETQq1 1 0.78<br>559-566.                                                                                                                                   | 34314 rgBT<br>7.5 | Överlock<br>14 |
| 64 | Comparison of Bulk Sediment and Sediment Elutriate Toxicity Testing Methods. Archives of Environmental Contamination and Toxicology, 2010, 58, 676-683.                                                                                                      | 4.1               | 14             |
| 65 | Transcriptional regulatory dynamics of the hypothalamic–pituitary–gonadal axis and its peripheral<br>pathways as impacted by the 3-beta HSD inhibitor trilostane in zebrafish (Danio rerio). Ecotoxicology<br>and Environmental Safety, 2011, 74, 1461-1470. | 6.0               | 14             |
| 66 | Changes in agglomeration of fullerenes during ingestion and excretion in <i>Thamnocephalus platyurus</i> . Environmental Toxicology and Chemistry, 2011, 30, 828-835.                                                                                        | 4.3               | 14             |
| 67 | An integrated assessment of sediment remediation in a midwestern U.S. stream using sediment chemistry, water quality, bioassessment, and fish biomarkers. Environmental Toxicology and Chemistry, 2013, 32, 653-661.                                         | 4.3               | 14             |
| 68 | Linking Excess Nutrients, Light, and Fine Bedded Sediments to Impacts on Faunal Assemblages in<br>Headwater Agricultural Streams <sup>1</sup> . Journal of the American Water Resources Association,<br>2009, 45, 1475-1492.                                 | 2.4               | 13             |
| 69 | Determining the effects of a mixture of an endocrine disrupting compound, 17α-ethinylestradiol, and ammonia on fathead minnow (Pimephales promelas) reproduction. Chemosphere, 2015, 120, 108-114.                                                           | 8.2               | 13             |
| 70 | Chapter 23 USEPA biomonitoring and bioindicator concepts needed to evaluate the biological integrity of aquatic systems. Trace Metals and Other Contaminants in the Environment, 2003, 6, 831-874.                                                           | 0.1               | 12             |
| 71 | An assessment of stressor extent and biological condition in the North American mid-continent great rivers (USA). River Systems, 2011, 19, 48-68.                                                                                                            | 0.2               | 12             |
| 72 | Subchronic sensitivity of one-, four-, and seven-day-old fathead minnow (Pimephales promelas) larvae to five toxicants. Environmental Toxicology and Chemistry, 1996, 15, 353-359.                                                                           | 4.3               | 11             |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Monitoring exposure of brown bullheads and benthic macroinvertebrates to sediment contaminants<br>in the Ashtabula river before, during, and after remediation. Environmental Toxicology and Chemistry,<br>2015, 34, 1267-1276. | 4.3 | 11        |
| 74 | Evaluation of reduced sediment volume toxicity test procedures using the marine amphipod <i>Ampelisca abdita</i> . Environmental Toxicology and Chemistry, 2002, 21, 2372-2377.                                                 | 4.3 | 10        |
| 75 | Contamination of fish in streams of the Mid-Atlantic Region: an approach to regional indicator selection and wildlife assessment. Environmental Toxicology and Chemistry, 2003, 22, 545-53.                                     | 4.3 | 10        |
| 76 | Rainbow Trout (Oncorhynchus mykiss) and Brook Trout (Salvelinus fontinalis) 7-Day Survival and<br>Growth Test Method. Archives of Environmental Contamination and Toxicology, 2007, 53, 397-405.                                | 4.1 | 8         |
| 77 | The effects of urbanization on Lepomis macrochirus using the comet assay. Ecotoxicology and Environmental Safety, 2012, 84, 299-303.                                                                                            | 6.0 | 7         |
| 78 | Initial development of a multigene â¿¿omics-based exposure biomarker for pyrethroid pesticides. Aquatic<br>Toxicology, 2016, 179, 27-35.                                                                                        | 4.0 | 7         |
| 79 | The relationship of total copper 48â€H LC50s to <i>Daphnia magna</i> dry weight. Environmental<br>Toxicology and Chemistry, 1993, 12, 903-911.                                                                                  | 4.3 | 6         |
| 80 | Risks from mercury in anadromous fish collected from Penobscot River, Maine. Science of the Total<br>Environment, 2021, 781, 146691.                                                                                            | 8.0 | 6         |
| 81 | Sediment Toxicity in Mid-Continent Great Rivers (USA). Archives of Environmental Contamination and Toxicology, 2011, 60, 57-67.                                                                                                 | 4.1 | 5         |
| 82 | Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors. Environmental Toxicology and Chemistry, 2011, 30, 385-392.                                                      | 4.3 | 5         |
| 83 | A new approach for the laboratory culture of the fathead minnow, <i>Pimephales promelas</i> .<br>Environmental Toxicology and Chemistry, 2014, 33, 126-133.                                                                     | 4.3 | 5         |
| 84 | A comparison of biomarker responses in juvenile diploid and triploid African catfish, Clarias gariepinus , exposed to the pesticide butachlor. Environmental Research, 2016, 151, 313-320.                                      | 7.5 | 5         |
| 85 | Tools to minimize interlaboratory variability in vitellogenin gene expression monitoring programs.<br>Environmental Toxicology and Chemistry, 2017, 36, 3102-3107.                                                              | 4.3 | 5         |
| 86 | Development of a Risk Characterization Tool for Harmful Cyanobacteria Blooms on the Ohio River.<br>Water (Switzerland), 2022, 14, 644.                                                                                          | 2.7 | 5         |
| 87 | Proof of concept for the use of macroinvertebrates as indicators of polychlorinated biphenyls (PCB) contamination in Lake Hartwell. Environmental Toxicology and Chemistry, 2015, 34, 1277-1282.                                | 4.3 | 4         |
| 88 | Experimental paradigm for inâ€laboratory proxy aquatic studies under conditions of static,<br>non–flowâ€through chemical exposures. Environmental Toxicology and Chemistry, 2015, 34, 2796-2802.                                | 4.3 | 4         |
| 89 | INTERLABORATORY COMPARISON OF A REDUCED VOLUME MARINE SEDIMENT TOXICITY TEST METHOD USING THE AMPHIPOD AMPELISCA ABDITA. Environmental Toxicology and Chemistry, 2004, 23, 632.                                                 | 4.3 | 3         |
| 90 | An interlaboratory comparison of sediment elutriate preparation and toxicity test methods.<br>Environmental Monitoring and Assessment, 2012, 184, 7343-7351.                                                                    | 2.7 | 3         |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Multigene Biomarkers of Pyrethroid Exposure: Exploratory Experiments. Environmental Toxicology and Chemistry, 2019, 38, 2436-2446.                                                       | 4.3 | 3         |
| 92 | Uptake of Sulfate from Ambient Water by Freshwater Animals. Water (Switzerland), 2020, 12, 1496.                                                                                         | 2.7 | 3         |
| 93 | CONTAMINATION OF FISH IN STREAMS OF THE MID-ATLANTIC REGION: AN APPROACH TO REGIONAL INDICATOR SELECTION AND WILDLIFE ASSESSMENT. Environmental Toxicology and Chemistry, 2003, 22, 545. | 4.3 | 2         |
| 94 | A toxicity assessment approach for evaluation of in-situ bioremediation of PAH contaminated sediments. , 2005, , .                                                                       |     | 1         |
| 95 | A Look Backwards at Environmental Risk Assessment: An Approach to Reconstructing Ecological Exposures. Emerging Topics in Ecotoxicology, 2012, , 109-137.                                | 1.5 | 0         |