Thomas Gemming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5914616/publications.pdf Version: 2024-02-01

		28274	42399
350	11,894	55	92
papers	citations	h-index	g-index
352	352	352	15493
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	38.1	1,354
2	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	19.5	385
3	Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nature Communications, 2013, 4, 1485.	12.8	327
4	Direct Imaging of Rotational Stacking Faults in Few Layer Graphene. Nano Letters, 2009, 9, 102-106.	9.1	225
5	Structural transformations in graphene studied with high spatial and temporal resolution. Nature Nanotechnology, 2009, 4, 500-504.	31.5	203
6	Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Materialia, 2006, 54, 997-1008.	7.9	200
7	The Role of Interfacial Oxygen Atoms in the Enhanced Mechanical Properties of Carbonâ€Nanotubeâ€Reinforced Metal Matrix Nanocomposites. Small, 2008, 4, 1936-1940.	10.0	177
8	Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Materialia, 2005, 53, 271-274.	5.2	152
9	Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries. Advanced Materials, 2014, 26, 4527-4532.	21.0	141
10	Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites. Acta Materialia, 2012, 60, 6000-6012.	7.9	133
11	Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium. Chemical Physics Letters, 2006, 421, 129-133.	2.6	130
12	Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy, 2006, 106, 284-291.	1.9	124
13	Twinned growth behaviour of two-dimensional materials. Nature Communications, 2016, 7, 13911.	12.8	123
14	On the Graphitization Nature of Oxides for the Formation of Carbon Nanostructures. Chemistry of Materials, 2007, 19, 4105-4107.	6.7	121
15	Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 562-570.	5.6	121
16	Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1209-1215.	9.1	120
17	Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock. Journal of Physical Chemistry C, 2007, 111, 2879-2884.	3.1	119
18	Electron-beam induced synthesis of nanostructures: a review. Nanoscale, 2016, 8, 11340-11362.	5.6	116

#	Article	IF	CITATIONS
19	Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites. Applied Physics Letters, 2008, 92, .	3.3	112
20	Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. Journal of Colloid and Interface Science, 2010, 345, 138-142.	9.4	111
21	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO _x by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.	14.6	108
22	Toward Highly Sensitive and Energy Efficient Ammonia Gas Detection with Modified Single-Walled Carbon Nanotubes at Room Temperature. ACS Sensors, 2018, 3, 79-86.	7.8	106
23	Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon, 2006, 44, 2316-2322.	10.3	100
24	Multimetallic Hierarchical Aerogels: Shape Engineering of the Building Blocks for Efficient Electrocatalysis. Advanced Materials, 2017, 29, 1605254.	21.0	98
25	Thermal Decomposition of Ferrocene as a Method for Production of Single-Walled Carbon Nanotubes without Additional Carbon Sources. Journal of Physical Chemistry B, 2006, 110, 20973-20977.	2.6	96
26	Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 276-278.	2.3	92
27	Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. Journal of Applied Physics, 2005, 98, 074315.	2.5	92
28	Oxide-Driven Carbon Nanotube Growth in Supported Catalyst CVD. Journal of the American Chemical Society, 2007, 129, 15772-15773.	13.7	91
29	Graphene-Like ZnO: A Mini Review. Crystals, 2016, 6, 100.	2.2	86
30	Incorporation of sulfur, chlorine, and carbon into electroplated Cu thin films. Microelectronic Engineering, 2007, 84, 54-59.	2.4	84
31	Microstructure and hydrogen storage properties of melt-spun Mg–Cu–Ni–Y alloys. International Journal of Hydrogen Energy, 2011, 36, 1592-1600.	7.1	82
32	Self-Supporting Hierarchical Porous PtAg Alloy Nanotubular Aerogels as Highly Active and Durable Electrocatalysts. Chemistry of Materials, 2016, 28, 6477-6483.	6.7	81
33	Growth of platinum on TiO2- and SrO-terminated SrTiO3(100). Surface Science, 2000, 448, 279-289.	1.9	78
34	Production of Porous β-Type Ti–40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing. Materials, 2013, 6, 5700-5712.	2.9	77
35	Novel Approach for Alternating Current (AC)â€Driven Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2012, 22, 210-217.	14.9	76
36	Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. Journal of Applied Physics, 2005, 97, 056102.	2.5	74

#	Article	IF	CITATIONS
37	Elastic softening of β-type Ti–Nb alloys by indium (In) additions. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 162-174.	3.1	73
38	Direct Magnetic Patterning due to the Generation of Ferromagnetism by Selective Ion Irradiation of Paramagnetic FeAl Alloys. Small, 2009, 5, 229-234.	10.0	71
39	Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 8714-8720.	3.1	70
40	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	3.7	70
41	High quality double wall carbon nanotubes with a defined diameter distribution by chemical vapor deposition from alcohol. Carbon, 2006, 44, 3177-3182.	10.3	66
42	Catalyst-free synthesis of onion-like carbon nanoparticles. New Carbon Materials, 2010, 25, 1-8.	6.1	66
43	Flash Joule heating for ductilization of metallic glasses. Nature Communications, 2015, 6, 7932.	12.8	66
44	Iterative structure retrieval techniques in HREM: a comparative study and a modular program package. Journal of Microscopy, 1998, 190, 109-130.	1.8	64
45	Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation. Physical Review B, 2012, 85, .	3.2	64
46	Quantitative Atomic-Scale Analysis of Interface Structures: Transmission Electron Microscopy and Local Density Functional Theory. Physical Review Letters, 2001, 86, 5066-5069.	7.8	63
47	Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes. Nanotechnology, 2007, 18, 375601.	2.6	63
48	ZrTiO4 crystallisation in nanosized liquid–liquid phase-separation droplets in glass—a quantitative XANES study. CrystEngComm, 2011, 13, 2550.	2.6	61
49	Microchemistry and magnetization reversal mechanism in melt-spun 2:17-type Sm-Co magnets. Applied Physics Letters, 2003, 83, 2208-2210.	3.3	60
50	Microstructure, microchemistry, and magnetic properties of melt-spun Sm(Co,Fe,Cu,Zr)z magnets. Journal of Applied Physics, 2003, 93, 7975-7977.	2.5	60
51	Design of ductile bulk metallic glasses by adding "soft―atoms. Applied Physics Letters, 2012, 100, .	3.3	60
52	Catalyst Volume to Surface Area Constraints for Nucleating Carbon Nanotubes. Journal of Physical Chemistry B, 2007, 111, 8234-8241.	2.6	59
53	Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2015, 119, 13363-13368.	3.1	57
54	Influence of the Catalyst Hydrogen Pretreatment on the Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes. Chemistry of Materials, 2007, 19, 6131-6137.	6.7	56

#	Article	IF	CITATIONS
55	Stable Dispersion of Iodide-Capped PbSe Quantum Dots for High-Performance Low-Temperature Processed Electronics and Optoelectronics. Chemistry of Materials, 2015, 27, 4328-4337.	6.7	56
56	A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. Journal of Materials Chemistry B, 2015, 3, 2522-2529.	5.8	56
57	Aspects of static and dynamic magnetic anisotropy inNi81Fe19â^'NiOfilms. Physical Review B, 2007, 75, .	3.2	55
58	Magnetic anisotropy and domain patterning of amorphous films by He-ion irradiation. Applied Physics Letters, 2005, 86, 162502.	3.3	53
59	Chemiresistive biosensors based on carbon nanotubes for label-free detection of DNA sequences derived from avian influenza virus H5N1. Sensors and Actuators B: Chemical, 2017, 249, 691-699.	7.8	52
60	Cu@TiO ₂ Janus microswimmers with a versatile motion mechanism. Soft Matter, 2018, 14, 6969-6973.	2.7	52
61	Compositional complexity dependence of dislocation density and mechanical properties in high entropy alloy systems. Progress in Natural Science: Materials International, 2020, 30, 545-551.	4.4	52
62	Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science, 2021, 87, 100929.	31.2	52
63	Electron-Driven <i>In Situ</i> Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS Nano, 2019, 13, 978-995.	14.6	51
64	Isotope-Engineered Single-Wall Carbon Nanotubes; A Key Material for Magnetic Studies. Journal of Physical Chemistry C, 2007, 111, 4094-4098.	3.1	50
65	Single-wall-carbon-nanotube/single-carbon-chain molecular junctions. Physical Review B, 2010, 81, .	3.2	49
66	Temporal Evolution of Diffusion Barriers Surrounding ZrTiO ₄ Nuclei in Lithia Aluminosilicate Glass-Ceramics. Crystal Growth and Design, 2012, 12, 1556-1563.	3.0	48
67	Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition. Journal of Alloys and Compounds, 2017, 691, 482-488.	5.5	48
68	Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology, 2006, 17, 2415-2419.	2.6	47
69	Nanoengineered Catalyst Particles as a Key for Tailor-Made Carbon Nanotubes. Chemistry of Materials, 2007, 19, 5006-5009.	6.7	47
70	Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon, 2007, 45, 55-61.	10.3	45
71	Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sensors, 2021, 6, 3841-3881.	7.8	45
72	Structure and Chemistry of Symmetrical Tilt Grain Boundaries in αâ€Al ₂ O ₃ : I, Bicrystals with "Clean―Interface. Journal of the American Ceramic Society, 2003, 86, 581-89.	3.8	44

#	Article	IF	CITATIONS
73	Single Cr atom catalytic growth of graphene. Nano Research, 2018, 11, 2405-2411.	10.4	41
74	Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips. Lab on A Chip, 2019, 19, 4043-4051.	6.0	41
75	Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. Journal of Applied Physics, 2009, 106, .	2.5	40
76	Sexithiophene Encapsulated in a Singleâ€Walled Carbon Nanotube: An In Situ Raman Spectroelectrochemical Study of a Peapod Structure. Chemistry - A European Journal, 2010, 16, 11753-11759.	3.3	39
77	On the diffusion-controlled growth of multiwalled carbon nanotubes. Journal of Applied Physics, 2005, 97, 114301.	2.5	38
78	Filling of carbon nanotubes for bioâ€applications. Physica Status Solidi (B): Basic Research, 2007, 244, 4315-4318.	1.5	38
79	One-Dimensional Confined Motion of Single Metal Atoms inside Double-Walled Carbon Nanotubes. Physical Review Letters, 2009, 102, 195504.	7.8	38
80	Spinodal decomposition of Ni–Nb–Y metallic glasses. Acta Materialia, 2009, 57, 903-908.	7.9	38
81	Superparamagnetic FeCo and FeNi Nanocomposites Dispersed in Submicrometer-Sized C Spheres. Journal of Physical Chemistry C, 2012, 116, 22509-22517.	3.1	37
82	Tailoring carbon nanostructures via temperature and laser irradiation. Chemical Physics Letters, 2005, 407, 254-259.	2.6	36
83	Determination of manganese valency in La1â^xSrxMnO3 using ELNES in the (S)TEM. Micron, 2007, 38, 224-230.	2.2	36
84	β-type Ti-based bulk metallic glass composites with tailored structural metastability. Journal of Alloys and Compounds, 2017, 708, 972-981.	5.5	36
85	New Frontiers in Electron Beam–Driven Chemistry in and around Graphene. Advanced Materials, 2019, 31, e1800715.	21.0	36
86	Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2. Journal of Applied Physics, 2005, 97, 056105.	2.5	35
87	Catalyst size dependencies for carbon nanotube synthesis. Physica Status Solidi (B): Basic Research, 2007, 244, 3911-3915.	1.5	35
88	Confirming the Dual Role of Etchants during the Enrichment of Semiconducting Single Wall Carbon Nanotubes by Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 5964-5973.	6.7	35
89	Amorphous martensite in \hat{I}^2 -Ti alloys. Nature Communications, 2018, 9, 506.	12.8	35
90	Structural, optical, and electronic properties of vanadium oxide nanotubes. Physical Review B, 2005, 72, .	3.2	34

#	Article	IF	CITATIONS
91	On the\$L1_0\$Ordering Kinetics in Fe-Pt Nanoparticles. IEEE Transactions on Magnetics, 2006, 42, 3048-3050.	2.1	34
92	Polymeric Frameworks as Organic Semiconductors with Controlled Electronic Properties. Journal of Physical Chemistry Letters, 2013, 4, 2977-2981.	4.6	34
93	Atomic structure and formation of CuZrAl bulk metallic glasses and composites. Acta Materialia, 2015, 100, 369-376.	7.9	34
94	Structural and magnetotransport properties of YBa2Cu3O7â^îrâ•Y2O3 quasimultilayers. Journal of Applied Physics, 2005, 98, 123906.	2.5	33
95	Phase separation in Ni–Nb–Y metallic glasses. Journal of Alloys and Compounds, 2010, 495, 299-304.	5.5	33
96	Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 2015, 5, 60884-60891.	3.6	32
97	Highâ€performance electronics and optoelectronics of monolayer tungsten diselenide full film from preâ€seeding strategy. InformaÄnÃ-Materiály, 2021, 3, 1455-1469.	17.3	32
98	PrismaticΣ3(101Â⁻0)twin boundary inαâ^'Al2O3investigated by density functional theory and transmission electron microscopy. Physical Review B, 2002, 66, .	3.2	31
99	Strontium release from Sr2+-loaded bone cements and dispersion in healthy and osteoporotic rat bone. Journal of Controlled Release, 2017, 262, 159-169.	9.9	31
100	Effect of short-term tempering on microstructure and mechanical properties of high-strength FeCrMoVC. Acta Materialia, 2012, 60, 4468-4476.	7.9	30
101	Core-hole effect in the ELNES of α-Al2O3: experiment and theory. Ultramicroscopy, 2001, 86, 339-342.	1.9	29
102	Superior mechanical properties of FeCrMoVC. Applied Physics Letters, 2007, 90, 261901.	3.3	29
103	Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties. Journal of Materials Science, 2017, 52, 4944-4956.	3.7	29
104	Phase separation in amorphous Ni–Nb–Y alloys. Scripta Materialia, 2007, 57, 29-32.	5.2	28
105	High-strength Al ₈₇ Ni ₈ La ₅ bulk alloy produced by spark plasma sintering of gas atomized powders. Journal of Materials Research, 2009, 24, 2909-2916.	2.6	28
106	Carbon Nanostructures as a Multi-Functional Platform for Sensing Applications. Chemosensors, 2018, 6, 60.	3.6	28
107	One-step catalyst-free generation of carbon nanospheres via laser-induced pyrolysis of anthracene. Journal of Solid State Chemistry, 2008, 181, 2796-2803.	2.9	27
108	Anisotropic mechanical behavior of ultrafine eutectic TiFe cast under non-equilibrium conditions. Intermetallics, 2011, 19, 327-335.	3.9	27

#	Article	IF	CITATIONS
109	In Situ Fabrication of Freestanding Singleâ€Atomâ€Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments. Advanced Science, 2021, 8, e2100619.	11.2	27
110	On the effects of solution and reaction parameters for the aerosol-assisted CVD growth of long carbon nanotubes. Applied Physics A: Materials Science and Processing, 2006, 82, 719-725.	2.3	26
111	Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology, 2007, 18, 275610.	2.6	26
112	CVD growth of singleâ€walled Bâ€doped carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 1935-1938.	1.5	26
113	Highly biocompatible superparamagnetic Ni nanoparticles dispersed in submicron-sized C spheres. Carbon, 2013, 63, 358-366.	10.3	26
114	Porous graphitic materials obtained from carbonization of organic xerogels doped with transition metal salts. Bulletin of Materials Science, 2014, 37, 141-150.	1.7	26
115	Silicon monophosphide as a possible lithium battery anode material. Journal of Materials Chemistry A, 2018, 6, 19974-19978.	10.3	26
116	A comparison study of dislocation density, recrystallization and grain growth among nickel, FeNiCo ternary alloy and FeNiCoCrMn high entropy alloy. Journal of Alloys and Compounds, 2019, 790, 266-273.	5.5	25
117	Improved kinetic behaviour of Mg(NH2)2-2LiH doped with nanostructured K-modified-LixTiyOz for hydrogen storage. Scientific Reports, 2020, 10, 8.	3.3	25
118	Boron-Doped Single-Walled Carbon Nanotubes with Enhanced Thermoelectric Power Factor for Flexible Thermoelectric Devices. ACS Applied Energy Materials, 2020, 3, 2556-2564.	5.1	25
119	Eutectic limit for the growth of carbon nanotubes from a thin iron film by chemical vapor deposition of cyclohexane. Chemical Physics Letters, 2006, 425, 301-305.	2.6	24
120	The statistics of the thermal motion of the atoms during imaging process in transmission electron microscopy and related techniques. Ultramicroscopy, 2009, 109, 139-146.	1.9	24
121	In situobservations of self-repairing single-walled carbon nanotubes. Physical Review B, 2010, 81, .	3.2	24
122	Controlled surface modification of Ti–40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomaterialia, 2013, 9, 9201-9210.	8.3	24
123	Synthesis and characterization of amorphous Ni–Zr thin films. Thin Solid Films, 2014, 561, 48-52.	1.8	24
124	Structure and Giant Magnetoresistance Behaviour of Co–Cu/Cu Multilayers Electrodeposited Under Various Deposition Conditions. Journal of Nanoscience and Nanotechnology, 2006, 6, 2000-2012.	0.9	23
125	Currentâ€Induced Mass Transport in Filled Multiwalled Carbon Nanotubes. Advanced Materials, 2011, 23, 541-544.	21.0	23
126	Micro-to-nano-scale deformation mechanism of a Ti-based dendritic-ultrafine eutectic alloy exhibiting large tensile ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 673-678.	5.6	23

#	Article	IF	CITATIONS
127	Active Assembly of Spheroidal Photocatalytic BiVO ₄ Microswimmers. Langmuir, 2020, 36, 12473-12480.	3.5	23
128	Emerging Internet of Things driven carbon nanotubes-based devices. Nano Research, 2022, 15, 4613-4637.	10.4	23
129	Thermal transport through short-period SiGe nanodot superlattices. Journal of Applied Physics, 2014, 115, 044312.	2.5	22
130	Current Progress in the Chemical Vapor Deposition of Type-Selected Horizontally Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2016, 10, 7248-7266.	14.6	22
131	Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 9185-9193.	8.0	22
132	In Situ Formation of Free-Standing Single-Atom-Thick Antiferromagnetic Chromium Membranes. Nano Letters, 2020, 20, 4354-4361.	9.1	22
133	Structure and Chemistry of Symmetrical Tilt Grain Boundaries in αâ€Al ₂ O ₃ : II, Bicrystals with Y at the Interface. Journal of the American Ceramic Society, 2003, 86, 590-94.	3.8	21
134	Finite-size effects in highly ordered ultrathin FePt films. Physical Review B, 2010, 82, .	3.2	21
135	Influence of boron and oxygen on the microstructure and mechanical properties of high-strength Ti66Nb13Cu8Ni6.8Al6.2 alloys. Acta Materialia, 2013, 61, 3324-3334.	7.9	21
136	Negentropic stabilization of metastable β-Ti in bulk metallic glass composites. Scripta Materialia, 2016, 125, 19-23.	5.2	21
137	Size and time dependent internalization of label-free nano-graphene oxide in human macrophages. Nano Research, 2017, 10, 1980-1995.	10.4	21
138	Colloidal PbS nanoplatelets synthesized <i>via</i> cation exchange for electronic applications. Nanoscale, 2019, 11, 19370-19379.	5.6	21
139	Morphology and microstructure of the Ar+-ion sputtered (0001) α-Al2O3 surface. Applied Surface Science, 2000, 165, 159-165.	6.1	20
140	Novel catalysts for low temperature synthesis of single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3101-3105.	1.5	20
141	Surface modeling and chemical solution deposition of SrO(SrTiO3) Ruddlesden–Popper phases. Acta Materialia, 2010, 58, 4650-4659.	7.9	20
142	Polymer-derived nanoporous silicon carbide with monodisperse spherical pores. Journal of Materials Chemistry, 2012, 22, 24841.	6.7	20
143	Analytical Transmission Electron Microscopy. , 2014, , .		20
144	Facile graphitization of silicon nano-particles with ethanol based chemical vapor deposition. Nano Structures Nano Objects, 2018, 16, 38-44.	3.5	20

#	Article	IF	CITATIONS
145	Improving the oxidation resistance of RuAl thin films with Al2O3 or SiO2 cover layers. Journal of Alloys and Compounds, 2019, 776, 819-825.	5.5	20
146	Quantitative diffractometry at 0.1 nm resolution for testing lenses and recording media of a high-voltage atomic resolution microscope. Journal of Electron Microscopy, 1997, 46, 381-395.	0.9	19
147	Formation of novel nanostructures using carbon nanotubes as a frame. Synthetic Metals, 2005, 153, 345-348.	3.9	19
148	Phase separation in liquid and amorphous Ni–Nb–Y alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 207-210.	5.6	19
149	Exposing Multiple Roles of H ₂ O in High-Temperature Enhanced Carbon Nanotube Synthesis. Chemistry of Materials, 2008, 20, 6586-6588.	6.7	19
150	Tungsten/molybdenum thin films for application as interdigital transducers on high temperature stable piezoelectric substrates La3Ga5SiO14 and Ca3TaGa3Si2O14. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 202, 31-38.	3.5	19
151	Highly photocatalytic TiO2interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology, 2015, 26, 364001.	2.6	19
152	The Influence of Phonon Scattering on HREM Images. Acta Crystallographica Section A: Foundations and Advances, 1998, 54, 83-90.	0.3	18
153	Investigation of high power effects on Ti/Al and Ta-Si-N/Cu/Ta-Si-N electrodes for SAW devices. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 911-917.	3.0	18
154	Local stress engineering of magnetic anisotropy in soft magnetic thin films. Applied Physics Letters, 2009, 94, .	3.3	18
155	Mn Valency at La0.7Sr0.3MnO3/SrTiO3 (0 0 1) Thin Film Interfaces. Microscopy and Microanalysis, 2009, 15, 213-221.	0.4	18
156	Microstructure, electrical resistivity and stresses in sputter deposited W and Mo films and the influence of the interface on bilayer properties. Thin Solid Films, 2014, 571, 1-8.	1.8	18
157	In-Plane Thermal Conductivity of Radial and Planar Si/SiO _{<i>x</i>} Hybrid Nanomembrane Superlattices. ACS Nano, 2017, 11, 8215-8222.	14.6	18
158	Investigation of strontium transport and strontium quantification in cortical rat bone by time-of-flight secondary ion mass spectrometry. Journal of the Royal Society Interface, 2019, 16, 20180638.	3.4	18
159	Abâ€initioHRTEM simulations of ionic crystals: a case study of sapphire. Journal of Microscopy, 1998, 190, 89-98.	1.8	17
160	Revisiting the Cu47Ti33Zr11Ni8Si1 glass-forming alloy. Scripta Materialia, 2006, 54, 835-840.	5.2	17
161	Modifying CVD synthesised carbon nanotubes via the carbon feed rate. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2227-2230.	2.7	17
162	Epitaxial Fe ₃ Si films on GaAs(100) substrates by means of electron beam evaporation. Nanotechnology, 2009, 20, 235604.	2.6	17

#	Article	IF	CITATIONS
163	In situ observations of fullerene fusion and ejection in carbon nanotubes. Nanoscale, 2010, 2, 2077.	5.6	17

164 Synthesis of carbon-encapsulated iron nanoparticles by pyrolysis of iron citrate and poly(vinyl) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 702

165	The effect of boron on microstructure and mechanical properties of high-strength cast FeCrVC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 267-275.	5.6	17
166	Tensile piezoresistivity and disruption of percolation in singlewall and multiwall carbon nanotube/polyurethane composites. Synthetic Metals, 2013, 185-186, 96-102.	3.9	17
167	Hierarchical porous zeolite ZSM-58 derived by desilication and desilication re-assembly. Microporous and Mesoporous Materials, 2014, 187, 114-124.	4.4	17
168	Clow discharge plasma as a surface preparation tool for microstructure investigations. Materials Characterization, 2014, 91, 76-88.	4.4	17
169	RuAl thin films on high–temperature piezoelectric substrates. Materials Research Express, 2015, 2, 085001.	1.6	17
170	Highly sensitive photodetectors using ZnTe/ZnO core/shell nanowire field effect transistors with a tunable core/shell ratio. Journal of Materials Chemistry C, 2016, 4, 2040-2046.	5.5	17
171	New Insight on the Hydrogen Absorption Evolution of the Mg–Fe–H System under Equilibrium Conditions. Metals, 2018, 8, 967.	2.3	17
172	Transmission electron microscopy investigation of Ti2Al precipitation in titanium aluminides during high-strain torsion. Journal of Alloys and Compounds, 2006, 417, 169-172.	5.5	16
173	Enhanced π-π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube. Nano Research, 2010, 3, 92-97.	10.4	16
174	Evaluation of a mobile vacuum transfer system for in vacuo XPS analysis using as-deposited Ti thin-films. Vacuum, 2015, 117, 81-84.	3.5	16
175	Tungsten as a Chemically-Stable Electrode Material on Ga-Containing Piezoelectric Substrates Langasite and Catangasite for High-Temperature SAW Devices. Materials, 2016, 9, 101.	2.9	16
176	Conversion of magnesium waste into a complex magnesium hydride system: Mg(NH ₂) ₂ –LiH. Sustainable Energy and Fuels, 2020, 4, 1915-1923.	4.9	16
177	Study of Active Janus Particles in the Presence of an Engineered Oil–Water Interface. Langmuir, 2021, 37, 204-210.	3.5	16
178	Studies on spontaneous formation of 1D nanocrystals of silicon carbide. Crystal Research and Technology, 2005, 40, 334-339.	1.3	15
179	On the formation process of silicon carbide nanophases via hydrogenated thermally induced templated synthesis. Applied Physics A: Materials Science and Processing, 2005, 80, 1653-1656.	2.3	15
180	Microstructure and magnetic properties of Gd–Hf–Co–Al phase separated metallic glasses. Intermetallics, 2012, 20, 115-122.	3.9	15

#	Article	IF	CITATIONS
181	Zirconium and Hafnium Twin Monomers for Mixed Oxides. ChemPlusChem, 2015, 80, 559-567.	2.8	15
182	Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature. ACS Nano, 2016, 10, 6323-6330.	14.6	15
183	The influence of barrier layers (SiO2, Al2O3, W) on the phase formation and stability of RuAl thin films on LGS and CTGS substrates for surface acoustic wave technology. Journal of Alloys and Compounds, 2016, 688, 228-240.	5.5	15
184	TEM-characterization of magnetic samarium- and cobalt-rich-nanocrystals formed in hexagonal SiC. Journal of Magnetism and Magnetic Materials, 2005, 293, 924-937.	2.3	14
185	Nanocrystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass. Journal of Materials Research, 2006, 21, 597-607.	2.6	14
186	Single-Walled Carbon Nanotubes Synthesis: A Direct Comparison of Laser Ablation and Carbon Arc Routes. Journal of Nanoscience and Nanotechnology, 2008, 8, 6178-6186.	0.9	14
187	Systematic Studies on Carbon Nanotubes Synthesis from Aliphatic Alcohols by the CVD Floating Catalyst Method. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 298-307.	2.1	14
188	Epitaxial Electrodeposition of Fe ₃ O ₄ on Single-Crystal Ni(111). Chemistry of Materials, 2011, 23, 2017-2019.	6.7	14
189	Robust determination of Young's modulus of individual carbon nanotubes by quasi-static interaction with Lorentz forces. Ultramicroscopy, 2011, 111, 155-158.	1.9	14
190	Anodization of titanium in radio frequency oxygen discharge — Microstructure, kinetics & transport mechanism. Solid State Ionics, 2016, 290, 130-139.	2.7	14
191	TEM studies on the changes of the composition in LGS and CTGS substrates covered with a RuAl metallization and on the phase formation within the RuAl film after heat treatment at 600 and 800°C. Journal of Alloys and Compounds, 2016, 664, 510-517.	5.5	14
192	Nano-inspired fluidic interactivity for boiling heat transfer: impact and criteria. Scientific Reports, 2016, 6, 34348.	3.3	14
193	Photosensitive Fieldâ€Effect Transistors Made from Semiconducting Carbon Nanotubes and Nonâ€Covalently Attached Gold Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900030.	1.8	14
194	In Situ Nâ€Đoped Graphene and Mo Nanoribbon Formation from Mo ₂ Ti ₂ C ₃ MXene Monolayers. Small, 2020, 16, e1907115.	10.0	14
195	An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene. Nanotechnology, 2022, 33, 185702.	2.6	14
196	Carbon nanotubes grown from individual gas phase prepared iron catalyst particles. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1786-1790.	1.8	13
197	Cyclohexane triggers staged growth of pure and vertically aligned single wall carbon nanotubes. Chemical Physics Letters, 2008, 454, 332-336.	2.6	13
198	Iron filled carbon nanostructures from different precursors. Energy Conversion and Management, 2008, 49, 2483-2486.	9.2	13

#	Article	IF	CITATIONS
199	Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. Journal of Applied Physics, 2009, 105, 016103.	2.5	13
200	Microcavity enhanced silicon light emitting pn-diode. Applied Physics Letters, 2010, 96, 151113.	3.3	13
201	The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon, 2012, 50, 1706-1709.	10.3	13
202	Investigation of Copper-Cobalt-Oxides as Model Systems for Composite Interactions in Conversion-Type Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1333-A1339.	2.9	13
203	Room Temperature in Situ Growth of B/BO _{<i>x</i>} Nanowires and BO _{<i>x</i>} Nanotubes. Nano Letters, 2014, 14, 799-805.	9.1	13
204	In situ studies of temperature-dependent behaviour and crystallisation of Ni36.5Pd36.5P27 metallic glass. Journal of Alloys and Compounds, 2014, 615, S208-S212.	5.5	13
205	Co(II) ethylene glycol carboxylates for Co3O4 nanoparticle and nanocomposite formation. Journal of Materials Science, 2017, 52, 6697-6711.	3.7	13
206	In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation. Nano Letters, 2017, 17, 4725-4732.	9.1	13
207	In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope. Materials, 2018, 11, 896.	2.9	13
208	Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca ²⁺ in motoneurons. Nanoscale, 2019, 11, 16103-16113.	5.6	13
209	Microstructure and composition of annealed Al/Ti-metallization layers. Analytical and Bioanalytical Chemistry, 2004, 379, 547-53.	3.7	12
210	Thermo-mechanical behavior and microstructural evolution of electrochemically deposited low-alloyed Cu(Ag) thin films. Microelectronic Engineering, 2004, 76, 205-211.	2.4	12
211	Coercivity mechanism of Sm2(Co,Cu,Fe,Zr)17-based magnets prepared by melt-spinning. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1206-1209.	2.3	12
212	Amorphous states of melt-spun alloys in the system Dy–(Mn,Fe)6–(Ge,Al)6. Applied Physics Letters, 2007, 90, 031903.	3.3	12
213	Functionalizing Single-Wall Carbon Nanotubes in Hollow Cathode Glow Discharges. Plasma Chemistry and Plasma Processing, 2009, 29, 79-90.	2.4	12
214	Hydrogen activated axial inter-conversion in SiC nanowires. Journal of Solid State Chemistry, 2009, 182, 602-607.	2.9	12
215	In Situ Observation of Melting Behavior of ZnTe Nanowires. Journal of Physical Chemistry C, 2014, 118, 15061-15067.	3.1	12
216	Twin Polymerization: A Unique and Efficient Tool for Supporting Silver Nanoparticles on Highly Porous Carbon and Silica. European Journal of Inorganic Chemistry, 2014, 2014, 3161-3163.	2.0	12

#	Article	IF	CITATIONS
217	The Influence of the Composition of Ru100â^'xAlx (x = 50, 55, 60, 67) Thin Films on Their Thermal Stability. Materials, 2017, 10, 277.	2.9	12
218	ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. Materials Science and Engineering C, 2020, 117, 111305.	7.3	12
219	Nanocrystal development in Cu47Ti33Zr11Ni8Si1 metallic glass powders. Journal of Alloys and Compounds, 2006, 415, 162-169.	5.5	11
220	Sulfur incorporation in electroplated Cu(Ag) thin films. Mikrochimica Acta, 2006, 156, 167-172.	5.0	11
221	Influence of the substrate loading on the quality and diameter distribution of SWCNT in alcohol VD. Physica Status Solidi (B): Basic Research, 2007, 244, 3925-3929.	1.5	11
222	A continuous synthesis of carbon nanotubes by dc thermal plasma jet. Applied Physics A: Materials Science and Processing, 2008, 91, 223-228.	2.3	11
223	Ultrafast self-catalytic growth of silicon carbide nanowires. Journal of Materials Research, 2011, 26, 3065-3071.	2.6	11
224	Size evaluation of nanostructured materials. Materials Letters, 2013, 108, 343-345.	2.6	11
225	Pt-wire bonding optimization for electroplated Pt films on γ-Al2O3 for high temperature and harsh environment applications. Sensors and Actuators A: Physical, 2018, 284, 129-134.	4.1	11
226	Calcite incorporated in silica/collagen xerogels mediates calcium release and enhances osteoblast proliferation and differentiation. Scientific Reports, 2020, 10, 118.	3.3	11
227	Microstructure of Al/Ti Metallization Layers. International Journal of Materials Research, 2003, 94, 317-322.	0.8	10
228	Direct evidence of self-aligned Si nanocrystals formed by ion irradiation of Si/SiO2interfaces. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R170-R172.	1.8	10
229	Iron filled singlewalled carbon nanotubes – synthesis and characteristic properties. Physica Status Solidi (B): Basic Research, 2006, 243, 3277-3280.	1.5	10
230	Synthesis of single wall carbon nanotubes with invariant diameters using a modified laser assisted chemical vapour deposition route. Nanotechnology, 2006, 17, 5469-5473.	2.6	10
231	Structure and properties of sputter deposited crystalline and amorphous Cu–Ti films. Thin Solid Films, 2016, 598, 184-188.	1.8	10
232	Metal nanoparticle-loaded porous carbon hollow spheres by twin polymerization. Journal of Materials Science, 2017, 52, 12653-12662.	3.7	10
233	Mo-La2O3 Multilayer Metallization Systems for High Temperature Surface Acoustic Wave Sensor Devices. Materials, 2019, 12, 2651.	2.9	10
234	Microswimming by oxidation of dibenzylamine. Chemical Communications, 2022, 58, 4052-4055.	4.1	10

#	Article	IF	CITATIONS
235	Beyond Janus Geometry: Characterization of Flow Fields around Nonspherical Photocatalytic Microswimmers. Advanced Science, 2022, 9, .	11.2	10
236	Validity of the dipole-selection rule for the Al-L2,3 edge of α-Al2O3 under channeling conditions. Ultramicroscopy, 2001, 88, 253-263.	1.9	9
237	Material transport in Al-metallizations of power-loaded SAW structures. Applied Surface Science, 2005, 252, 215-217.	6.1	9
238	Bulk quantity and physical properties of boron nitride nanocapsules with a narrow size distribution. Carbon, 2005, 43, 615-621.	10.3	9
239	Anisotropic Enhancement of Flux Pinning in Mixed Rare Earth 123-Type Thin Films. IEEE Transactions on Applied Superconductivity, 2005, 15, 3738-3741.	1.7	9
240	Catalytic decomposition of n-heptane for the growth of high quality single wall carbon nanotubes. Chemical Physics Letters, 2006, 428, 416-420.	2.6	9
241	Carbonâ€encapsulated Magnetic Nanoparticles Spontaneously Formed by Thermolysis Route. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 217-230.	2.1	9
242	Analysis of surface preâ€ŧreatment for SAWâ€substrate material (LiNbO ₃) and deposited thin films of Ta/Ti using ARXPS. Surface and Interface Analysis, 2014, 46, 1033-1038.	1.8	9
243	Ion milling-induced micrometer-sized heterogeneities and partial crystallization in a TiZrCuFeBe bulk metallic glass. Intermetallics, 2016, 73, 5-11.	3.9	9
244	Compositional depth profiling of diamond-like carbon layers by glow discharge optical emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2016, 31, 2207-2212.	3.0	9
245	Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition. Journal of the Iranian Chemical Society, 2016, 13, 299-305.	2.2	9
246	Calcite and Hydroxyapatite Gelatin Composites as Bone Substitution Material Made by the Double Migration Technique. Crystal Growth and Design, 2017, 17, 738-745.	3.0	9
247	Evaluation of Surface Cleaning Procedures for CTGS Substrates for SAW Technology with XPS. Materials, 2017, 10, 1373.	2.9	9
248	Effect of silver additions on the microstructure, mechanical properties and corrosion behavior of biodegradable Fe-30Mn-6Si. Materials Today Communications, 2021, 28, 102689.	1.9	9
249	Magnetic Domains and Coercivity in SmCo 2:17 Type Magnets. Journal of Iron and Steel Research International, 2006, 13, 48-59.	2.8	8
250	Nanostructured graphite prepared by ball-milling at low temperatures. Carbon, 2006, 44, 812-814.	10.3	8
251	Single-wall carbon nanotubes prepared with different kinds of Ni–Co catalysts: Raman and optical spectrum analysis. Carbon, 2007, 45, 196-202.	10.3	8
252	On the graphitisation role of oxide supports in carbon nanotube CVD synthesis. Physica Status Solidi (B): Basic Research, 2008, 245, 1939-1942.	1.5	8

#	Article	IF	CITATIONS
253	TEM investigation of Ti and Ti/Al bilayer as alternative diffusion barriers for Cu metallization for SAW device applications. Microelectronic Engineering, 2008, 85, 2055-2058.	2.4	8
254	Size effects on the magnetization reversal behavior of exchange bias modulated thin films. Journal of Applied Physics, 2008, 104, 013926.	2.5	8
255	Preparation of CNT-Copper Matrix Composite Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 6096-6103.	0.9	8
256	Boron doped carbon nanotubes via ceramic catalysts. Physica Status Solidi - Rapid Research Letters, 2009, 3, 193-195.	2.4	8
257	Interface-driven magnetoelectric effects in granular CrO ₂ . Europhysics Letters, 2010, 91, 17006.	2.0	8
258	(Bi,Sb)2Te3-PbTe chalcogenide alloys: Impact of the cooling rate and sintering parameters on the microstructures and thermoelectric performances. Journal of Materials Research, 2011, 26, 1773-1784.	2.6	8
259	Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor. Beilstein Journal of Nanotechnology, 2016, 7, 1033-1043.	2.8	8
260	Proximity effect between a superconductor and a partially spin-polarized ferromagnet: Case study of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Pb<!--<br-->Physical Review B, 2017, 96, .</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math 	mml: 3;2 < m	ml: <mark>%</mark> o>/
261	Effects of radiative local heating on metal solidification during selective laser melting for additive manufacturing. Applied Surface Science, 2019, 496, 143594.	6.1	8
262	Studies on the electrical resistivity of bilayer and multilayer thin films of sputtered tungsten and molybdenum. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 243, 96-107.	3.5	8
263	Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging. Nanoscale, 2021, 13, 10425-10435.	5.6	8
264	Shells on nanowires detected by analytical TEM. Applied Surface Science, 2005, 252, 245-251.	6.1	7
265	Modification of SiC based nanorods via a hydrogenated annealing process. Synthetic Metals, 2005, 153, 349-352.	3.9	7
266	Study on hydrogen uptake of functionalized carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3226-3229.	1.5	7
267	Growth of carbon nanotubes from wet chemistry and thin film multilayer catalysts. Physica Status Solidi (B): Basic Research, 2006, 243, 3054-3057.	1.5	7
268	Comparative study on thermal and plasma enhanced CVD grown carbon nanotubes from gas phase prepared elemental and binary catalyst particles. Physica Status Solidi (B): Basic Research, 2008, 245, 1919-1922.	1.5	7
269	Bulk synthesis of carbon nanocapsules and nanotubes containing magnetic nanoparticles via low energy laser pyrolysis of ferrocene. Materials Letters, 2009, 63, 1767-1770.	2.6	7
270	Carbon nanotube synthesis via ceramic catalysts. Physica Status Solidi (B): Basic Research, 2009, 246, 2486-2489.	1.5	7

#	ARTICLE tudy of chemical solution deposited <mml:math <br="" altimg="si0036.gif" overflow="scroll">xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XiviLSchema"</mml:math>	IF	CITATIONS
271	xmlns.xocs= http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.w3.org/2001/XMLSchema- xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.9	7
272	Spark plasma sintering of gas atomized Al ₈₇ Ni ₈ La ₅ amorphous powder. Journal of Physics: Conference Series, 2009, 144, 012079.	0.4	7
273	Self-sustaining high-temperature synthesis of carbon-encapsulated magnetic nanoparticles from organic and inorganic metal precursors. New Carbon Materials, 2010, 25, 81-88.	6.1	7
274	Enhanced Nucleation of Vortices in Soft Magnetic Materials Prepared by Silica Nanosphere Lithography. Advanced Functional Materials, 2011, 21, 891-896.	14.9	7
275	A Systematic and Comparative Study of Binary Metal Catalysts for Carbon Nanotube Fabrication Using CVD and Laser Evaporation. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 273-285.	2.1	7
276	Vertical Graphene Growth from Amorphous Carbon Films Using Oxidizing Gases. Journal of Physical Chemistry C, 2015, 119, 17965-17970.	3.1	7
277	Nanostructure formation mechanism during in-situ consolidation of copper by room-temperature ball milling. Materials & Design, 2015, 65, 1083-1090.	5.1	7
278	Wetting behaviour of Cu–Ga alloys on 304L steel. Materials and Design, 2016, 91, 11-18.	7.0	7
279	Capability Study of Ti, Cr, W, Ta and Pt as Seed Layers for Electrodeposited Platinum Films on γ-Al2O3 for High Temperature and Harsh Environment Applications. Materials, 2017, 10, 54.	2.9	7
280	Silica-coated iron-oxide nanoparticles doped with Gd(III) complexes as potential double contrast agents for magnetic resonance imaging at different field strengths. Journal of Chemical Sciences, 2018, 130, 1.	1.5	7
281	Phase Formation and High-Temperature Stability of Very Thin Co-Sputtered Ti-Al and Multilayered Ti/Al Films on Thermally Oxidized Si Substrates. Materials, 2020, 13, 2039.	2.9	7
282	Contribution to understand the biomineralization of bones. Journal of Bone and Mineral Metabolism, 2020, 38, 456-468.	2.7	7
283	Metallic Precipitate Formation during Alumina Growth in a FeCrAl-Based Thermal Barrier Coating Model System. Materials Science Forum, 2001, 369-372, 671-678.	0.3	6
284	Tuning Carbon Nanotubes Through Poor Metal Addition to Iron Catalysts in CVD. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 37-44.	2.1	6
285	Understanding the growth of amorphous SiO ₂ nanofibers and crystalline binary nanoparticles produced by laser ablation. Nanotechnology, 2012, 23, 035601.	2.6	6
286	Local temperature determination in power loaded surface acoustic wave structures using Raman spectroscopy. Journal of Applied Physics, 2013, 114, 164317.	2.5	6
287	Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum. Materials, 2015, 8, 8868-8876.	2.9	6
288	Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer. Scientific Reports, 2017, 7, 45323.	3.3	6

#	Article	IF	CITATIONS
289	Nitrogen-containing porous carbon materials by twin polymerization. Colloid and Polymer Science, 2018, 296, 413-426.	2.1	6
290	Rapid synthesis of pristine graphene inside a transmission electron microscope using gold as catalyst. Communications Chemistry, 2019, 2, .	4.5	6
291	Pt-RuAl bilayers as a model system for Pt wire bonding of high-temperature RuAl electrodes. Journal of Alloys and Compounds, 2020, 813, 152107.	5.5	6
292	Largeâ€Area Singleâ€Crystal Graphene via Selfâ€Organization at the Macroscale. Advanced Materials, 2020, 32, 2002755.	21.0	6
293	Tailoring the stoichiometry of C ₃ N ₄ nanosheets under electron beam irradiation. Physical Chemistry Chemical Physics, 2021, 23, 4747-4756.	2.8	6
294	Effect of Viscosity on Microswimmers: A Comparative Study. ChemNanoMat, 2021, 7, 1042-1050.	2.8	6
295	An Easy Oneâ€step Route to Carbonâ€encapsulated Magnetic Nanoparticles. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 600-615.	2.1	5
296	Effect of the microstructure on the intercalation and exfoliation behaviour of graphite. Journal of Materials Science, 2011, 46, 2422-2430.	3.7	5
297	Phase-field modeling of eutectic Ti–Fe alloy solidification. Computational Materials Science, 2012, 63, 319-328.	3.0	5
298	Density measurement of thin layers by electron energy loss spectroscopy (EELS). Micron, 2013, 50, 57-61.	2.2	5
299	Si(OCH ₂ Fc) ₄ : Synthesis, Electrochemical Behavior, and Twin Polymerization. European Journal of Inorganic Chemistry, 2015, 2015, 3850-3860.	2.0	5
300	Coevaporation and structuring of titanium–aluminum alloy thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	5
301	Study of TiAl thin films on piezoelectric CTGS substrates as an alternative metallization system for high-temperature SAW devices. Journal of Materials Research and Technology, 2021, 12, 2383-2395.	5.8	5
302	Semiconductor-Based Microswimmers: Attention to Detail Matters. Journal of Physical Chemistry Letters, 2021, 12, 9651-9656.	4.6	5
303	Polyol-Assisted Synthesis of Copper Particles. Journal of Physical Chemistry C, 2021, 125, 24887-24893.	3.1	5
304	Synthesis of single wall carbon nanotubes with defined13C content. Physica Status Solidi (B): Basic Research, 2006, 243, 3050-3053.	1.5	4
305	Synthesis of Heterogenous Multiâ€Walled Carbon Nanotubes in a Carbon Arc in Water. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 207-213.	2.1	4
306	On the Formation of Single-Walled Carbon Nanotubes in Pulsed-Laser-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2008, 20, 128-134.	6.7	4

#	Article	IF	CITATIONS
307	Ultra Highly Selective Synthesis of Double-Walled Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 137-147.	2.1	4
308	Preparation of highâ€quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder. Microscopy Research and Technique, 2012, 75, 711-719.	2.2	4
309	The study of structure of Fe–B–P based metallic glasses. Applied Surface Science, 2013, 269, 102-105.	6.1	4
310	Analysis of the thermal and temporal stability of Ta and Ti thin films onto SAW–substrate materials (LiNbO ₃ and LiTaO ₃) using ARâ€XPS. Surface and Interface Analysis, 2016, 48, 570-574.	1.8	4
311	A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments. Applied Physics Letters, 2016, 108, .	3.3	4
312	T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes. Journal of Chemical Sciences, 2021, 133, 1.	1.5	4
313	Enhanced gas adsorption property of hybrid nanopore-structured copper oxide synthesized from the carbon nanotube/copper composites. Journal of Applied Physics, 2010, 108, 064303.	2.5	3
314	Microstructure analysis at the interface of Er decorated Ge nanocrystals in SiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>. Physical</mml:math 	3.2	3
315	Review B, 2011, 83, . Defect assisted thermal synthesis of crystalline aluminum borate nanowires. Journal of Applied Physics, 2012, 112, .	2.5	3
316	Thermosonic platinum wire bonding on platinum. , 2014, , .		3
317	Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes. RSC Advances, 2016, 6, 72568-72574.	3.6	3
318	Room temperature single-step synthesis of metal decorated boron-rich nanowires via laser ablation. Nano Convergence, 2019, 6, 14.	12.1	3
319	Stress and Microstructure Evolution in Mo Thin Films without or with Cover Layers during Thermal-Cycling. Materials, 2020, 13, 3926.	2.9	3
320	Improved corrosion behavior of a novel Fe85Cr4Mo8V2C1 tool steel processed by laser powder bed fusion. Journal of Alloys and Compounds, 2021, 867, 158887.	5.5	3
321	Selective growth of vertically aligned Fe-filled carbon nanotubes on oxidized silicon substrates. Journal of Physics: Conference Series, 2007, 61, 815-819.	0.4	2
322	Microstructure of Co2CrxFe1â^'xAl thin films for magneto-electronic applications. Thin Solid Films, 2007, 515, 6781-6790.	1.8	2
323	Magnetostriction Behavior of Pseudobulk CoFeBSiNb(Ga) Systems. Journal of Superconductivity and Novel Magnetism, 2013, 26, 797-800.	1.8	2
324	In-situ Quasi-Instantaneous e-beam Driven Catalyst-Free Formation Of Crystalline Aluminum Borate Nanowires. Scientific Reports, 2016, 6, 22524.	3.3	2

#	Article	IF	CITATIONS
325	Functionalization of Ti-40Nb implant material with strontium by reactive sputtering. Biomaterials Research, 2017, 21, 18.	6.9	2
326	Electroless-Deposited Platinum Antennas for Wireless Surface Acoustic Wave Sensors. Materials, 2019, 12, 1002.	2.9	2
327	Oxide nanolayer formation on surface of modified blast furnace sludge particles during voltammetric cycling in alkaline media. Journal of Solid State Electrochemistry, 2021, 25, 365-372.	2.5	2
328	Microstructure and phase formation of Heusler thin film compounds. International Journal of Materials Research, 2005, 96, 1015-1023.	0.8	2
329	Novel Fe-0.3Cr-0.4Mo-1.5Mn–3Ni-0.6C tool steel with superior properties under quasi-static and dynamic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142156.	5.6	2
330	Investigation of matrix independent calibration of oxygen in glow discharge optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2022, 37, 1223-1228.	3.0	2
331	Long-term high-temperature behavior of Ti–Al based electrodes for surface acoustic wave devices. Journal of Materials Research and Technology, 2022, 19, 989-1002.	5.8	2
332	Are Common Atom Form Factors in HREM-Simulations Accurate Enough for Quantitative Image Matching?. Microscopy and Microanalysis, 1997, 3, 1159-1160.	0.4	1
333	Microstructure of Al/Ti Metallization Layers. Microscopy and Microanalysis, 2003, 9, 250-251.	0.4	1
334	Bulk synthesis and characteristic properties of boron nitride nanostructures: nanocapsules and nanotubes. AIP Conference Proceedings, 2004, , .	0.4	1
335	Silver intercalated carbon nanotubes. AIP Conference Proceedings, 2005, , .	0.4	1
336	Unifying catalyst size dependencies in floating catalyst and supported catalyst carbon nanotube synthesis. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1386-1390.	1.8	1
337	Evidence for self-organized formation of logarithmic spirals during explosive crystallization of amorphous Ge:Mn layers. Journal of Applied Physics, 2017, 121, 184901.	2.5	1
338	Estimate of the Degree of the Spin Polarization of a Ferromagnet from Data on the Superconductor/Ferromagnet Proximity Effect. JETP Letters, 2017, 106, 805-809.	1.4	1
339	Synthesis of spherical iron-oxide nanoparticles of various sizes under different synthetic conditions. Chemical Papers, 2019, 73, 2715-2722.	2.2	1
340	Some Metastable Polymorphs and Transient Stages of Transformation in Alumina. Physica Status Solidi A, 1998, 166, 197-218.	1.7	1
341	Quantitative HREM: Reliable Structure Determination of Grain Boundaries in SrTiO3. Microscopy and Microanalysis, 2001, 7, 310-311.	0.4	0
342	Thermally Induced Templated Synthesis for the Formation of SiC Nanotubes and more. AIP Conference Proceedings, 2004, , .	0.4	0

#	Article	IF	CITATIONS
343	Metal Oxides and Low Temperature SWCNT Synthesis via Laser Evaporation. AIP Conference Proceedings, 2005, , .	0.4	Ο
344	Effect of Film Thickness on the Thermo-Mechanical Behavior of Unpassivated Cu(Ag) Thin Films during Thermal Cycling. AIP Conference Proceedings, 2006, , .	0.4	0
345	Textured growth and microstructure of pulsed laser deposited Nb/Cr/SmCo5 hybrid structures. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1785-1791.	1.8	0
346	Elektronenbeugung zur Analyse dünner Funktionsschichten. Vakuum in Forschung Und Praxis, 2012, 24, 30-33.	0.1	0
347	Twin Polymerization: A Unique and Efficient Tool for Supporting Silver Nanoparticles on Highly Porous Carbon and Silica. European Journal of Inorganic Chemistry, 2014, 2014, 3148-3148.	2.0	0
348	Microstructural study of phase separation in (GeS3)100-xAgx and (GeS2)100-xAgx chalcogenide glasses. Materials Today: Proceedings, 2021, 35, 530-533.	1.8	0
349	Let us Use the Analytical Possibilities. , 2014, , 177-226.		0
350	We Increase the Magnification. , 2014, , 137-162.		0