
W Bruce Turnbull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5913904/publications.pdf Version: 2024-02-01

W RDUCE THONBUIL

#	Article	IF	CITATIONS
1	Microbial carbohydrate-binding toxins – From etiology to biotechnological application. Biotechnology Advances, 2022, 59, 107951.	6.0	6
2	Protein-conjugated microbubbles for the selective targeting of S. aureus biofilms. Biofilm, 2022, 4, 100074.	1.5	5
3	Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chemical Society Reviews, 2022, 51, 4121-4145.	18.7	41
4	In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in Escherichia coli. Toxins, 2022, 14, 396.	1.5	2
5	<i>C</i> -type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases. Biochemical Journal, 2021, 478, 2927-2944.	1.7	9
6	Piggybacking on the Cholera Toxin: Identification of a CTB-Binding Protein as an Approach for Targeted Delivery of Proteins to Motor Neurons. Bioconjugate Chemistry, 2021, 32, 2205-2212.	1.8	10
7	Exploiting the Structural Metamorphosis of Polymers to †Wrap' Micronâ€ S ized Spherical Objects. Chemistry - A European Journal, 2021, , .	1.7	0
8	Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin–Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly. Journal of the American Chemical Society, 2020, 142, 18022-18034.	6.6	49
9	A versatile cholera toxin conjugate for neuronal targeting and tracing. Chemical Communications, 2020, 56, 6098-6101.	2.2	9
10	Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation. Organic and Biomolecular Chemistry, 2020, 18, 4000-4003.	1.5	8
11	Chemoenzymatic synthesis of 3-deoxy-3-fluoro- <scp>l</scp> -fucose and its enzymatic incorporation into glycoconjugates. Chemical Communications, 2020, 56, 6408-6411.	2.2	8
12	Biochemical characterisation of an α1,4 galactosyltransferase from <i>Neisseria weaveri</i> for the synthesis of α1,4-linked galactosides. Organic and Biomolecular Chemistry, 2020, 18, 3142-3148.	1.5	7
13	Enzymatic synthesis of <i>N</i> -acetyllactosamine from lactose enabled by recombinant β1,4-galactosyltransferases. Organic and Biomolecular Chemistry, 2019, 17, 5920-5924.	1.5	14
14	Synthetic glycobiology. Interface Focus, 2019, 9, 20190004.	1.5	5
15	A â€~catch-and-release' receptor for the cholera toxin. Faraday Discussions, 2019, 219, 112-127.	1.6	7
16	Directed Assembly of Homopentameric Cholera Toxin B-Subunit Proteins into Higher-Order Structures Using Coiled-Coil Appendages. Journal of the American Chemical Society, 2019, 141, 5211-5219.	6.6	18
17	Multidimensional micro- and nano-printing technologies: general discussion. Faraday Discussions, 2019, 219, 73-76.	1.6	0
18	Glycan interactions on glycocalyx mimetic surfaces: general discussion. Faraday Discussions, 2019, 219, 183-188.	1.6	0

W BRUCE TURNBULL

#	Article	IF	CITATIONS
19	New directions in surface functionalization and characterization: general discussion. Faraday Discussions, 2019, 219, 252-261.	1.6	0
20	Preparation of multivalent glycan micro- and nano-arrays: general discussion. Faraday Discussions, 2019, 219, 128-137.	1.6	1
21	Probing Multivalent Protein–Carbohydrate Interactions by Quantum Dot-Förster Resonance Energy Transfer. Methods in Enzymology, 2018, 598, 71-100.	0.4	3
22	Carbohydrate inhibitors of cholera toxin. Beilstein Journal of Organic Chemistry, 2018, 14, 484-498.	1.3	23
23	Molecular Recognitionâ€Mediated Transformation of Singleâ€Chain Polymer Nanoparticles into Crosslinked Polymer Films. Angewandte Chemie, 2017, 129, 13093-13098.	1.6	3
24	Molecular Recognitionâ€Mediated Transformation of Singleâ€Chain Polymer Nanoparticles into Crosslinked Polymer Films. Angewandte Chemie - International Edition, 2017, 56, 12913-12918.	7.2	25
25	Dissecting Multivalent Lectin–Carbohydrate Recognition Using Polyvalent Multifunctional Glycan-Quantum Dots. Journal of the American Chemical Society, 2017, 139, 11833-11844.	6.6	54
26	Confirmation of a Protein–Protein Interaction in the Pantothenate Biosynthetic Pathway by Using Sortaseâ€Mediated Labelling. ChemBioChem, 2016, 17, 753-758.	1.3	10
27	Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis. Chemistry - A European Journal, 2016, 22, 3916-3928.	1.7	26
28	Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein-Ligand Interactions. Angewandte Chemie, 2016, 128, 4816-4820.	1.6	16
29	Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein–Ligand Interactions. Angewandte Chemie - International Edition, 2016, 55, 4738-4742.	7.2	55
30	Rücktitelbild: Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein–Ligand Interactions (Angew. Chem. 15/2016). Angewandte Chemie, 2016, 128, 4920-4920.	1.6	0
31	Tetra―versus Pentavalent Inhibitors of Cholera Toxin. ChemistryOpen, 2015, 4, 471-477.	0.9	14
32	Templating carbohydrate-functionalised polymer-scaffolded dynamic combinatorial libraries with lectins. Organic and Biomolecular Chemistry, 2015, 13, 2756-2761.	1.5	29
33	Depsipeptide substrates for sortase-mediated N-terminal protein ligation. Nature Protocols, 2014, 9, 253-262.	5.5	43
34	Innentitelbild: A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit (Angew. Chem.) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
35	A Proteinâ€Based Pentavalent Inhibitor of the Cholera Toxin B‣ubunit. Angewandte Chemie - International Edition, 2014, 53, 8323-8327.	7.2	57

³⁶ Discovery of novel FabF ligands inspired by platensimycin by integrating structure-based design with diversity-oriented synthetic accessibility. Organic and Biomolecular Chemistry, 2014, 12, 486-494. 1.5 25

W BRUCE TURNBULL

#	Article	IF	CITATIONS
37	Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 2013, 42, 4709-4727.	18.7	464
38	Bacterial toxininhibitors based on multivalent scaffolds. Chemical Society Reviews, 2013, 42, 4613-4622.	18.7	115
39	Methylthioxylose – a jewel in the mycobacterial crown?. Organic and Biomolecular Chemistry, 2012, 10, 5698.	1.5	13
40	Efficient Nâ€Terminal Labeling of Proteins by Use of Sortase. Angewandte Chemie - International Edition, 2012, 51, 9377-9380.	7.2	114
41	Towards a Structural Basis for the Relationship Between Blood Group and the Severity of El Tor Cholera. Angewandte Chemie - International Edition, 2012, 51, 5143-5146.	7.2	33
42	Stereoselective glycosylations using oxathiane spiroketal glycosyl donors. Carbohydrate Research, 2012, 348, 6-13.	1.1	27
43	Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 278-284.	1.0	9
44	Do Glycosyl Sulfonium Ions Engage in Neighbouringâ€Group Participation? A Study of Oxathiane Glycosyl Donors and the Basis for their Stereoselectivity. Chemistry - A European Journal, 2012, 18, 321-333.	1.7	45
45	Mechanistic Studies on a Sulfoxide Transfer Reaction Mediated by Diphenyl Sulfoxide/Triflic Anhydride. Chemistry - A European Journal, 2012, 18, 2987-2997.	1.7	28
46	Monovalent and Multivalent Inhibitors of Bacterial Toxins. , 2012, , 78-91.		2
47	A hop, skip and jump. Nature Chemistry, 2011, 3, 267-268.	6.6	5
48	Studies on the synthesis of Lewis-y oligosaccharides. Carbohydrate Research, 2011, 346, 2113-2120.	1.1	15
49	Conformerâ€Independent Ureidoimidazole Motifs—Tools to Probe Conformational and Tautomeric Effects on the Molecular Recognition of Triply Hydrogenâ€Bonded Heterodimers. Chemistry - A European Journal, 2011, 17, 14508-14517.	1.7	26
50	Benzyne arylation of oxathiane glycosyl donors. Beilstein Journal of Organic Chemistry, 2010, 6, 19.	1.3	23
51	The Influence of Ligand Valency on Aggregation Mechanisms for Inhibiting Bacterial Toxins. ChemBioChem, 2009, 10, 329-337.	1.3	59
52	A natural carbohydrate substrate for Mycobacterium tuberculosismethionine sulfoxide reductase A. Chemical Communications, 2009, , 110-112.	2.2	15
53	Stereoselective glycosylation using oxathiane glycosyl donors. Chemical Communications, 2009, , 5841.	2.2	78
54	Neighbouring group participation vs. addition to oxacarbenium ions: studies on the synthesis of mycobacterial oligosaccharides. Organic and Biomolecular Chemistry, 2009, 7, 4842.	1.5	51

W BRUCE TURNBULL

#	Article	IF	CITATIONS
55	Multivalency and Cooperativity in Supramolecular Chemistry. ChemInform, 2005, 36, no.	0.1	Ο
56	Multivalency and Cooperativity in Supramolecular Chemistry. Accounts of Chemical Research, 2005, 38, 723-732.	7.6	609
57	Identification of the 5-Methylthiopentosyl Substituent inMycobacterium tuberculosis Lipoarabinomannan. Angewandte Chemie - International Edition, 2004, 43, 3918-3922.	7.2	67
58	Thermodynamics of Binding of 2-Methoxy-3-isopropylpyrazine and 2-Methoxy-3-isobutylpyrazine to the Major Urinary Protein. Journal of the American Chemical Society, 2004, 126, 1675-1681.	6.6	107
59	Dissecting the Cholera Toxinâ~Ganglioside GM1 Interaction by Isothermal Titration Calorimetry. Journal of the American Chemical Society, 2004, 126, 1047-1054.	6.6	179
60	On the Value ofc:Â Can Low Affinity Systems Be Studied by Isothermal Titration Calorimetry?. Journal of the American Chemical Society, 2003, 125, 14859-14866.	6.6	658
61	Large-Scale Millisecond Intersubunit Dynamics in the B Subunit Homopentamer of the Toxin Derived fromEscherichiacoliO157. Journal of the American Chemical Society, 2003, 125, 13058-13062.	6.6	18
62	Chemically Defined Sialoside Scaffolds for Investigation of Multivalent Interactions with Sialic Acid Binding Proteinsâ€. Journal of Organic Chemistry, 2003, 68, 8485-8493.	1.7	48
63	Design and synthesis of glycodendrimers. Reviews in Molecular Biotechnology, 2002, 90, 231-255.	2.9	209
64	Glycodendrimers based on cellobiosyl-derived monomers. Canadian Journal of Chemistry, 2002, 80, 983-991.	0.6	11
65	Large Oligosaccharide-Based Glycodendrimers Synthetic Carbohydrate Dendrimers, Part 9: for Part 8, see: W. B. Turnbull, A. R. Pease, J. F. Stoddart, ChemBioChem 2000, 1, 70–74 Chemistry - A European Journal, 2002, 8, 2988.	1.7	77
66	Large Oligosaccharideâ€Based Glycodendrimers ChemInform, 2002, 33, 80-80.	0.1	0
67	Toward the Synthesis of Large Oligosaccharide-Based Dendrimers. ChemBioChem, 2000, 1, 70-74.	1.3	36
68	Thio-oligosaccharides of sialic acid – synthesis of an α(2→3) sialyl galactoside via a gulofuranose/galactopyranose approach. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1859-1866.	1.3	24
69	Dynamic processes in solids: Three large-amplitude processes revealed in a simple quaternary ammonium salt. Magnetic Resonance in Chemistry, 1995, 33, 841-843.	1.1	3