Zupeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5913564/publications.pdf Version: 2024-02-01

ZUDENC CHEN

#	Article	IF	CITATIONS
1	A Stable Single‧ite Palladium Catalyst for Hydrogenations. Angewandte Chemie - International Edition, 2015, 54, 11265-11269.	7.2	779
2	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	23.0	690
3	A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 2018, 13, 702-707.	15.6	471
4	In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118382.	10.8	429
5	Recent Advances in Conjugated Polymers for Visibleâ€Lightâ€Driven Water Splitting. Advanced Materials, 2020, 32, e1907296.	11.1	279
6	Tuning the Morphology of g-C ₃ N ₄ for Improvement of Z-Scheme Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 15285-15293.	4.0	256
7	Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. Advanced Functional Materials, 2017, 27, 1605785.	7.8	249
8	Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 2019, 374, 1064-1075.	6.6	218
9	Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System <i>via</i> Copolymerization with Silver Tricyanomethanide. ACS Nano, 2016, 10, 3166-3175.	7.3	213
10	"The Easier the Better―Preparation of Efficient Photocatalysts—Metastable Poly(heptazine imide) Salts. Advanced Materials, 2017, 29, 1700555.	11.1	206
11	Triazoles: A New Class of Precursors for the Synthesis of Negatively Charged Carbon Nitride Derivatives. Chemistry of Materials, 2015, 27, 5170-5179.	3.2	198
12	Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9, 2634.	5.8	180
13	Microcontactâ€Printingâ€Assisted Access of Graphitic Carbon Nitride Films with Favorable Textures toward Photoelectrochemical Application. Advanced Materials, 2015, 27, 712-718.	11.1	177
14	Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Science Bulletin, 2020, 65, 460-466.	4.3	152
15	Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Applied Catalysis B: Environmental, 2019, 256, 117867.	10.8	137
16	Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. National Science Review, 2018, 5, 642-652.	4.6	132
17	Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy, 2020, 70, 104445.	8.2	118
18	Atomâ€byâ€Atom Resolution of Structure–Function Relations over Lowâ€Nuclearity Metal Catalysts. Angewandte Chemie - International Edition, 2019, 58, 8724-8729.	7.2	108

ZUPENG CHEN

#	Article	IF	CITATIONS
19	Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. Journal of Hazardous Materials, 2022, 423, 127128.	6.5	106
20	Upconversion-Agent Induced Improvement of g-C ₃ N ₄ Photocatalyst under Visible Light. ACS Applied Materials & Interfaces, 2014, 6, 16481-16486.	4.0	104
21	Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy, 2016, 25, 128-135.	8.2	97
22	Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. Journal of Materials Chemistry A, 2017, 5, 16393-16403.	5.2	83
23	Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward Highâ€Efficiency Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000414.	3.1	83
24	Rationalâ€Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO ₂ to Valueâ€Added Chemicals. Advanced Science, 2022, 9, e2105204.	5.6	75
25	The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Physical Chemistry Chemical Physics, 2014, 16, 14699-14705.	1.3	72
26	Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Applied Catalysis B: Environmental, 2020, 268, 118445.	10.8	69
27	Highly Electrocatalytic Activity of RuO ₂ Nanocrystals for Triiodide Reduction in Dyeâ€5ensitized Solar Cells. Small, 2014, 10, 484-492.	5.2	68
28	Synergistic Promotion of Single-Atom Co Surrounding a PtCo Alloy Based On a g-C ₃ N ₄ Nanosheet for Overall Water Splitting. ACS Catalysis, 2022, 12, 6958-6967.	5.5	59
29	High-yield synthesis and magnetic properties of ZnFe2O4 single crystal nanocubes in aqueous solution. Journal of Alloys and Compounds, 2013, 550, 348-352.	2.8	57
30	CuCu ₂ OTiO ₂ Nanojunction Systems with an Unusual Electron–Hole Transportation Pathway and Enhanced Photocatalytic Properties. Chemistry - an Asian Journal, 2013, 8, 1265-1270.	1.7	47
31	Enhanced Baseâ€Free Formic Acid Production from CO ₂ on Pd/g ₃ N ₄ by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2859-2869.	3.6	47
32	Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	5.6	47
33	Tailoring Nitrogenâ€Ðoped Carbons as Hosts for Singleâ€Atom Catalysts. ChemCatChem, 2019, 11, 2812-2820.	1.8	40
34	Recent Progress in Materials Exploration for Thermocatalytic, Photocatalytic, and Integrated Photothermocatalytic CO ₂ â€ŧoâ€Fuel Conversion. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	38
35	Carrierâ€Induced Modification of Palladium Nanoparticles on Porous Boron Nitride for Alkyne Semiâ€Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19639-19644.	7.2	36
36	Tunability and Scalability of Single-Atom Catalysts Based on Carbon Nitride. ACS Sustainable Chemistry and Engineering, 2019, 7, 5223-5230.	3.2	31

ZUPENG CHEN

#	Article	IF	CITATIONS
37	Surface Engineering of Carbon Nitride Electrode by Molecular Cobalt Species and Their Photoelectrochemical Application. Chemistry - an Asian Journal, 2018, 13, 1539-1543.	1.7	30
38	Enhancement of the Photocatalytic Activity of Carbon Nitrides by Complex Templating. Chemistry - A European Journal, 2015, 21, 10805-10811.	1.7	26
39	Enhancing photocatalytic activity of Sn doped TiO2 dominated with {105} facets. Catalysis Today, 2014, 225, 18-23.	2.2	25
40	Disordered Co _{1.28} Mn _{1.71} O ₄ as a Visibleâ€Lightâ€Responsive Photocatalyst for Hydrogen Evolution. Chemistry - A European Journal, 2013, 19, 4123-4127.	1.7	24
41	Baking â€~crumbly' carbon nitrides with improved photocatalytic properties using ammonium chloride. RSC Advances, 2016, 6, 2910-2913.	1.7	24
42	Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorganic Chemistry Frontiers, 2020, 7, 2434-2442.	3.0	23
43	Assembly of ultrathin PbBiO2Br nanosheets with enhanced visible light photocatalytic properties. RSC Advances, 2013, 3, 10687.	1.7	22
44	Atomâ€byâ€Atom Resolution of Structure–Function Relations over Lowâ€Nuclearity Metal Catalysts. Angewandte Chemie, 2019, 131, 8816-8821.	1.6	21
45	Bifunctional Hierarchical Zeoliteâ€5upported Silver Catalysts for the Conversion of Glycerol to Allyl Alcohol. ChemCatChem, 2017, 9, 2195-2202.	1.8	20
46	Hierarchical Porous Wood Cellulose Scaffold with Atomically Dispersed Pt Catalysts for Low-Temperature Ethylene Decomposition. ACS Nano, 2019, 13, 14337-14347.	7.3	19
47	Elucidation of Metal Local Environments in Singleâ€Atom Catalysts Based on Carbon Nitrides. Small, 2022, 18, .	5.2	15
48	Surface engineering of ultrasmall supported PdxBi nanoalloys with enhanced electrocatalytic activity for selective alcohol oxidation. Chemical Communications, 2019, 55, 13566-13569.	2.2	12
49	Carrierâ€Induced Modification of Palladium Nanoparticles on Porous Boron Nitride for Alkyne Semiâ€Hydrogenation. Angewandte Chemie, 2020, 132, 19807-19812.	1.6	11
50	Host-induced alteration of the neighbors of single platinum atoms enables selective and stable hydrogenation of butadiene. Nanoscale, 2022, 14, 10506-10513.	2.8	11
51	Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	9
52	Facile regeneration of oxidized porous carbon nitride rods by the de-aromatization of the heptazine network in bulk g-C ₃ N ₄ . Inorganic Chemistry Frontiers, 2022, 9, 1107-1114.	3.0	9
53	Selective hydrogenation of 1,3-butadiene on iridium nanostructures: Structure sensitivity, host effect, and deactivation mechanism. Journal of Energy Chemistry, 2022, 69, 541-554.	7.1	8
54	Iron-doping Accelerating NADH Oxidation over Carbon Nitride. Chemical Research in Chinese Universities, 2020, 36, 1076-1082.	1.3	7

ZUPENG CHEN

#	Article	IF	CITATIONS
55	Synthesis of atomic platinum with high loading on metal-organic sulfide. Science China Materials, 2022, 65, 1294-1302.	3.5	6
56	Degradation of Sodium Polystyrene Sulfonate and the Radical Initiated Polymerization of Styrene Under Ultrasonic Irradiation. Polymer-Plastics Technology and Engineering, 2011, 50, 1262-1265.	1.9	3
57	Catalysts: Stabilization of Single Metal Atoms on Graphitic Carbon Nitride (Adv. Funct. Mater. 8/2017). Advanced Functional Materials, 2017, 27, .	7.8	2
58	Enhanced Base-Free Formic Acid Production from CO2 on Pd/g-C3 N4 by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2841-2841.	3.6	0