
Tamara J Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5913245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex Differences in the Brain Transcriptome Related to Alcohol Effects and Alcohol Use Disorder. Biological Psychiatry, 2022, 91, 43-52.	1.3	30
2	Peri-adolescent exposure to (meth)amphetamine in animal models. International Review of Neurobiology, 2022, 161, 1-51.	2.0	0
3	Genetic and Brain Mechanisms of Addictive Behavior and Neuroadaptation. Brain Sciences, 2022, 12, 51.	2.3	0
4	A breeding strategy to identify modifiers of high genetic risk for methamphetamine intake. Genes, Brain and Behavior, 2021, 20, e12667.	2.2	6
5	Confirmation of a Causal Taar1 Allelic Variant in Addiction-Relevant Methamphetamine Behaviors. Frontiers in Psychiatry, 2021, 12, 725839.	2.6	4
6	Combined and sequential effects of alcohol and methamphetamine in animal models. Neuroscience and Biobehavioral Reviews, 2021, 131, 248-269.	6.1	1
7	On the Use of Heterogeneous Stock Mice to Map Transcriptomes Associated With Excessive Ethanol Consumption. Frontiers in Psychiatry, 2021, 12, 725819.	2.6	2
8	Phenotypic and gene expression features associated with variation in chronic ethanol consumption in heterogeneous stock collaborative cross mice. Genomics, 2020, 112, 4516-4524.	2.9	16
9	Non-genetic factors that influence methamphetamine intake in a genetic model of differential methamphetamine consumption. Psychopharmacology, 2020, 237, 3315-3336.	3.1	10
10	Differential genetic risk for methamphetamine intake confers differential sensitivity to the temperatureâ€altering effects of other addictive drugs. Genes, Brain and Behavior, 2020, 19, e12640.	2.2	4
11	Regional Analysis of the Brain Transcriptome in Mice Bred for High and Low Methamphetamine Consumption. Brain Sciences, 2019, 9, 155.	2.3	17
12	The Role of Biogenic Amine Transporters in Trace Amine–Associated Receptor 1 Regulation of Methamphetamine-Induced Neurotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 36-44.	2.5	5
13	Depressionâ€like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake. Genes, Brain and Behavior, 2019, 18, e12533.	2.2	12
14	Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1. ELife, 2019, 8, .	6.0	27
15	Verification of a genetic locus for methamphetamine intake and the impact of morphine. Mammalian Genome, 2018, 29, 260-272.	2.2	9
16	The Role of Trace Amine Associated Receptorâ€l (TAARâ€l) on the Modulation of Circadian Rhythms in Mice. FASEB Journal, 2018, 32, .	0.5	0
17	The combined effects of 3,4-methylenedioxymethamphetamine (MDMA) and selected substituted methcathinones on measures of neurotoxicity. Neurotoxicology and Teratology, 2017, 61, 74-81.	2.4	24
18	Amphetamine and Methamphetamine Increase NMDAR-GluN2B Synaptic Currents in Midbrain Dopamine Neurons. Neuropsychopharmacology, 2017, 42, 1539-1547.	5.4	33

#	Article	IF	CITATIONS
19	Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity. NeuroToxicology, 2017, 63, 57-69.	3.0	33
20	Methamphetamine Addiction Vulnerability: The Glutamate, the Bad, and the Ugly. Biological Psychiatry, 2017, 81, 959-970.	1.3	57
21	Parallel Effects of Methamphetamine on Anxiety and CCL3 in Humans and a Genetic Mouse Model of High Methamphetamine Intake. Neuropsychobiology, 2017, 75, 169-177.	1.9	11
22	A Spontaneous Mutation in Taar1 Impacts Methamphetamine-Related Traits Exclusively in DBA/2 Mice from a Single Vendor. Frontiers in Pharmacology, 2017, 8, 993.	3.5	40
23	A Mouse Model for Binge-Level Methamphetamine Use. Frontiers in Neuroscience, 2016, 10, 493.	2.8	23
24	Methamphetamine Consumption Inhibits Pair Bonding and Hypothalamic Oxytocin in Prairie Voles. PLoS ONE, 2016, 11, e0158178.	2.5	9
25	Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity. Physiology and Behavior, 2016, 165, 257-266.	2.1	5
26	Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. International Review of Neurobiology, 2016, 126, 39-85.	2.0	10
27	Prefrontal glutamate correlates of methamphetamine sensitization and preference. European Journal of Neuroscience, 2016, 43, 689-702.	2.6	38
28	Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function. PLoS ONE, 2016, 11, e0152581.	2.5	42
29	An animal model of differential genetic risk for methamphetamine intake. Frontiers in Neuroscience, 2015, 9, 327.	2.8	21
30	Effect of nucleus accumbens shell infusions of ganaxolone or gaboxadol on ethanol consumption in mice. Psychopharmacology, 2015, 232, 1415-1426.	3.1	21
31	Trace Amine-Associated Receptor 1 Regulation of Methamphetamine Intake and Related Traits. Neuropsychopharmacology, 2015, 40, 2175-2184.	5.4	78
32	Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation. Behavioural Brain Research, 2015, 288, 26-32.	2.2	12
33	Nicotine Enhances the Locomotor Stimulating but Not the Conditioned Rewarding Effect of Ethanol in DBA/2J Mice. Alcoholism: Clinical and Experimental Research, 2015, 39, 64-72.	2.4	6
34	Preclinical evidence implicating corticotropinâ€releasing factor signaling in ethanol consumption and neuroadaptation. Genes, Brain and Behavior, 2015, 14, 98-135.	2.2	44
35	Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation. Frontiers in Systems Neuroscience, 2014, 8, 70.	2.5	34

#	Article	IF	CITATIONS
37	Effects of Varenicline on Ethanolâ€Induced Conditioned Place Preference, Locomotor Stimulation, and Sensitization. Alcoholism: Clinical and Experimental Research, 2014, 38, 3033-3042.	2.4	21
38	Methamphetamine drinking microstructure in mice bred to drink high or low amounts of methamphetamine. Behavioural Brain Research, 2014, 272, 111-120.	2.2	20
39	Opioid sensitivity in mice selectively bred to consume or not consume methamphetamine. Addiction Biology, 2014, 19, 370-379.	2.6	29
40	Dualâ€Trait Selection for Ethanol Consumption and Withdrawal: Genetic and Transcriptional Network Effects. Alcoholism: Clinical and Experimental Research, 2014, 38, 2915-2924.	2.4	33
41	Long-term effects of exposure to methamphetamine in adolescent rats. Drug and Alcohol Dependence, 2014, 138, 17-23.	3.2	23
42	Morphine intake and the effects of naltrexone and buprenorphine on the acquisition of methamphetamine intake. Genes, Brain and Behavior, 2014, 13, 226-235.	2.2	17
43	Targeting GABA _B receptors for anti-abuse drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 1307-1317.	5.0	28
44	Differences in the reinstatement of ethanol seeking with ganaxolone and gaboxadol. Neuroscience, 2014, 272, 180-187.	2.3	19
45	Normalizing dopamine D2 receptor-mediated responses in D2 null mutant mice by virus-mediated receptor restoration: Comparing D2L and D2S. Neuroscience, 2013, 248, 479-487.	2.3	28
46	Genetic factors involved in risk for methamphetamine intake and sensitization. Mammalian Genome, 2013, 24, 446-458.	2.2	24
47	Unique genetic factors influence sensitivity to the rewarding and aversive effects of methamphetamine versus cocaine. Behavioural Brain Research, 2013, 256, 420-427.	2.2	13
48	Impaired memory and reduced sensitivity to the circadian period lengthening effects of methamphetamine in mice selected for high methamphetamine consumption. Behavioural Brain Research, 2013, 256, 197-204.	2.2	9
49	Accentuating effects of nicotine on ethanol response in mice with high genetic predisposition to ethanol-induced locomotor stimulation. Drug and Alcohol Dependence, 2013, 127, 108-114.	3.2	13
50	GABAB receptor activation attenuates the stimulant but not mesolimbic dopamine response to ethanol in FAST mice. Behavioural Brain Research, 2013, 237, 49-58.	2.2	3
51	Effects of sodium butyrate on methamphetamine-sensitized locomotor activity. Behavioural Brain Research, 2013, 239, 139-147.	2.2	15
52	Role of Corticotropin-Releasing Factor and Corticosterone in Behavioral Sensitization to Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 455-463.	2.5	19
53	Profound reduction in sensitivity to the aversive effects of methamphetamine in mice bred for high methamphetamine intake. Neuropharmacology, 2012, 62, 1134-1141.	4.1	40
54	A genetic animal model of differential sensitivity to methamphetamine reinforcement. Neuropharmacology, 2012, 62, 2169-2177.	4.1	42

#	Article	IF	CITATIONS
55	Do initial responses to drugs predict future use or abuse?. Neuroscience and Biobehavioral Reviews, 2012, 36, 1565-1576.	6.1	148
56	Intracranial self-stimulation in FAST and SLOW mice: effects of alcohol and cocaine. Psychopharmacology, 2012, 220, 719-730.	3.1	15
57	Behavioral inhibition in mice bred for high vs. low levels of methamphetamine consumption or sensitization. Psychopharmacology, 2012, 222, 353-365.	3.1	8
58	Involvement of the Beta-Endorphin Neurons of the Hypothalamic Arcuate Nucleus in Ethanol-Induced Place Preference Conditioning in Mice. Alcoholism: Clinical and Experimental Research, 2011, 35, 2019-2029.	2.4	19
59	Dissection of corticotropin-releasing factor system involvement in locomotor sensitivity to methamphetamine. Genes, Brain and Behavior, 2011, 10, 78-89.	2.2	27
60	Sensitivity to rewarding or aversive effects of methamphetamine determines methamphetamine intake. Genes, Brain and Behavior, 2011, 10, 625-636.	2.2	54
61	Selective breeding for magnitude of methamphetamine-induced sensitization alters methamphetamine consumption. Psychopharmacology, 2011, 214, 791-804.	3.1	26
62	Ethanol concentration-dependent effects and the role of stress on ethanol drinking in corticotropin-releasing factor type 1 and double type 1 and 2 receptor knockout mice. Psychopharmacology, 2011, 218, 169-177.	3.1	33
63	Behavioral Sensitization to Addictive Drugs: Clinical Relevance and Methodological Aspects. Neuromethods, 2011, , 267-305.	0.3	3
64	A method for mapping intralocus interactions influencing excessive alcohol drinking. Mammalian Genome, 2010, 21, 39-51.	2.2	22
65	The Complexity of Alcohol Drinking: Studies in Rodent Genetic Models. Behavior Genetics, 2010, 40, 737-750.	2.1	107
66	PRECLINICAL STUDY: FULL ARTICLE: Repeated ethanol administration modifies the temporal structure of sucrose intake patterns in mice: effects associated with behavioral sensitization. Addiction Biology, 2010, 15, 324-335.	2.6	17
67	Mice Selectively Bred for High- or Low-Alcohol-Induced Locomotion Exhibit Differences in Dopamine Neuron Function. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 342-349.	2.5	27
68	The α3 subunit gene of the nicotinic acetylcholine receptor is a candidate gene for ethanol stimulation. Genes, Brain and Behavior, 2009, 8, 600-609.	2.2	25
69	Ethanol―and cocaineâ€induced locomotion are genetically related to increases in accumbal dopamine. Genes, Brain and Behavior, 2009, 8, 346-355.	2.2	40
70	Genetically correlated effects of selective breeding for high and low methamphetamine consumption. Genes, Brain and Behavior, 2009, 8, 758-771.	2.2	77
71	Attenuation of the Stimulant Response to Ethanol is Associated with Enhanced Ataxia for a GABA _A , but not a GABA _B , Receptor Agonist. Alcoholism: Clinical and Experimental Research, 2009, 33, 108-120.	2.4	29
72	Combined Scopolamine and Ethanol Treatment Results in a Locomotor Stimulant Response Suggestive of Synergism That is Not Blocked by Dopamine Receptor Antagonists. Alcoholism: Clinical and Experimental Research, 2009, 33, 435-447.	2.4	8

#	Article	IF	CITATIONS
73	A Line of Mice Selected for High Blood Ethanol Concentrations Shows Drinking in the Dark to Intoxication. Biological Psychiatry, 2009, 65, 662-670.	1.3	144
74	Central urocortin 3 administration decreases limited-access ethanol intake in nondependent mice. Behavioural Pharmacology, 2009, 20, 346-351.	1.7	26
75	Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neuroscience and Biobehavioral Reviews, 2008, 32, 707-759.	6.1	48
76	A role for neuronal nicotinic acetylcholine receptors in ethanol-induced stimulation, but not cocaine- or methamphetamine-induced stimulation. Psychopharmacology, 2008, 196, 377-387.	3.1	40
77	Role of dopamine D1â€like receptors in methamphetamine locomotor responses of D2 receptor knockout mice. Genes, Brain and Behavior, 2008, 7, 568-577.	2.2	50
78	Corticotropin-releasing factor-1 receptor involvement in behavioral neuroadaptation to ethanol: A urocortin ₁ -independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9070-9075.	7.1	62
79	Allopregnanolone influences the consummatory processes that govern ethanol drinking in C57BL/6J mice. Behavioural Brain Research, 2007, 179, 265-272.	2.2	43
80	Mouse Lines Selected for Alcohol Consumption Differ on Certain Measures of Impulsivity. Alcoholism: Clinical and Experimental Research, 2007, 31, 1839-1845.	2.4	55
81	Behavioral sensitization to ethanol does not result in cross-sensitization to NMDA receptor antagonists. Psychopharmacology, 2007, 195, 103-115.	3.1	23
82	Delay Discounting Predicts Behavioral Sensitization to Ethanol in Outbred WSC Mice. Alcoholism: Clinical and Experimental Research, 2006, 30, 429-437.	2.4	49
83	Ethanol-related traits in mice selectively bred for differential sensitivity to methamphetamine-induced activation Behavioral Neuroscience, 2006, 120, 1356-1366.	1.2	25
84	Alcohol-related genes: contributions from studies with genetically engineered mice. Addiction Biology, 2006, 11, 195-269.	2.6	230
85	Corticotropin-releasing factor receptor type 2-deficient mice display impaired coping behaviors during stress. Genes, Brain and Behavior, 2006, 5, 131-138.	2.2	31
86	Sensitivity to the locomotor-stimulant effects of ethanol and allopregnanolone: a quantitative trait locus study of common genetic influence. Genes, Brain and Behavior, 2006, 5, 506-517.	2.2	22
87	GABAB receptor stimulation accentuates the locomotor effects of morphine in mice bred for extreme sensitivity to the stimulant effects of ethanol. Pharmacology Biochemistry and Behavior, 2006, 85, 697-704.	2.9	4
88	Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6368-6373.	7.1	349
89	Determining addiction $\hat{a} \in \mathbf{e}$ genes and substance use. Drugs and Alcohol Today, 2005, 5, 26-31.	0.7	0
90	Genetic Correlational Analyses of Ethanol Reward and Aversion Phenotypes in Short-Term Selected Mouse Lines Bred for Ethanol Drinking or Ethanol-Induced Conditioned Taste Aversion Behavioral Neuroscience, 2005, 119, 892-910.	1.2	55

#	Article	IF	CITATIONS
91	The Syntaxin Binding Protein 1 Gene (Stxbp1) Is a Candidate for an Ethanol Preference Drinking Locus on Mouse Chromosome 2. Alcoholism: Clinical and Experimental Research, 2005, 29, 708-720.	2.4	43
92	Mice Deficient in Corticotropin-Releasing Factor Receptor Type 2 Exhibit Normal Ethanol-Associated Behaviors. Alcoholism: Clinical and Experimental Research, 2005, 29, 1601-1609.	2.4	28
93	Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice. Alcoholism: Clinical and Experimental Research, 2005, 29, 1630-1640.	2.4	78
94	Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mammalian Genome, 2005, 16, 291-305.	2.2	84
95	Naloxone does not attenuate the locomotor effects of ethanol in FAST, SLOW, or two heterogeneous stocks of mice. Psychopharmacology, 2005, 182, 277-289.	3.1	12
96	Behavioral sensitization to ethanol is modulated by environmental conditions, but is not associated with cross-sensitization to allopregnanolone or pentobarbital in DBA/2J mice. Neuroscience, 2005, 131, 263-273.	2.3	22
97	Sensitivity to psychostimulants in mice bred for high and low stimulation to methamphetamine. Genes, Brain and Behavior, 2004, 4, 110-125.	2.2	72
98	On the Integration of Alcohol-Related Quantitative Trait Loci and Gene Expression Analyses. Alcoholism: Clinical and Experimental Research, 2004, 28, 1437-1448.	2.4	55
99	Let???s Not Discourage Innovative Approaches to Complex Questions. Alcoholism: Clinical and Experimental Research, 2004, 28, 1607-1608.	2.4	1
100	Pharmacogenetic studies of alcohol self-administration and withdrawal. Psychopharmacology, 2004, 174, 539-60.	3.1	33
101	Corticotropin-releasing factor overexpression decreases ethanol drinking and increases sensitivity to the sedative effects of ethanol. Psychopharmacology, 2004, 176, 386-397.	3.1	40
102	Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice. Neuroscience, 2004, 123, 813-819.	2.3	82
103	Effects of a Drd2 deletion mutation on ethanol-induced locomotor stimulation and sensitization suggest a role for epistasis. Behavior Genetics, 2003, 33, 311-324.	2.1	50
104	Different data from different labs: Lessons from studies of gene-environment interaction. Journal of Neurobiology, 2003, 54, 283-311.	3.6	450
105	Cross-Sensitization Between the Locomotor Stimulant Effects of Ethanol and Those of Morphine and Cocaine in Mice. Alcoholism: Clinical and Experimental Research, 2003, 27, 616-627.	2.4	49
106	Reverse Selection for Differential Response to the Locomotor Stimulant Effects of Ethanol Provides Evidence for Pleiotropic Genetic Influence on Locomotor Response to Other Drugs of Abuse. Alcoholism: Clinical and Experimental Research, 2003, 27, 1535-1547.	2.4	35
107	Sensitivity to Ketamine, Alone or in Combination With Ethanol, Is Altered in Mice Selectively Bred for Sensitivity to Ethanol???s Locomotor Effects. Alcoholism: Clinical and Experimental Research, 2003, 27, 1701-1709.	2.4	17
108	Mother nature meets mother nurture. Nature Neuroscience, 2003, 6, 440-442.	14.8	20

7

#	Article	IF	CITATIONS
109	Internet Resources for Genomic, Bioinformatics, and Medical Genetics Information. Current Protocols in Neuroscience, 2003, 22, Appendix 5A.	2.6	1
110	Bivalent effects of MK-801 on ethanol-induced sensitization do not parallel its effects on ethanol-induced tolerance Behavioral Neuroscience, 2003, 117, 641-649.	1.2	46
111	Cross-Sensitization Between the Locomotor Stimulant Effects of Ethanol and Those of Morphine and Cocaine in Mice. Alcoholism: Clinical and Experimental Research, 2003, 27, 616-627.	2.4	11
112	Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes Behavioral Neuroscience, 2002, 116, 126-137.	1.2	25
113	Locomotor activity responses to ethanol, other alcohols and GABA-A acting compounds in forward- and reverse-selected FAST and SLOW mouse lines Behavioral Neuroscience, 2002, 116, 958-967.	1.2	23
114	Ventral tegmental area region governs GABAB receptor modulation of ethanol-stimulated activity in mice. Neuroscience, 2002, 115, 185-200.	2.3	65
115	Initial sensitivity, tolerance and cross-tolerance to allopregnanolone- and ethanol-induced hypothermia in selected mouse lines. Psychopharmacology, 2002, 162, 313-322.	3.1	30
116	Harnessing the mouse to unravel the genetics of human disease. Genes, Brain and Behavior, 2002, 1, 14-26.	2.2	79
117	Complex-trait genetics: emergence of multivariate strategies. Nature Reviews Neuroscience, 2002, 3, 478-485.	10.2	48
118	Forward, Relaxed, and Reverse Selection for Reduced and Enhanced Sensitivity to Ethanol's Locomotor Stimulant Effects in Mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 593-602.	2.4	23
119	Effect of Forward and Reverse Selection for Ethanol-Induced Locomotor Response on Other Measures of Ethanol Sensitivity. Alcoholism: Clinical and Experimental Research, 2002, 26, 1322-1329.	2.4	8
120	Forward, Relaxed, and Reverse Selection for Reduced and Enhanced Sensitivity to Ethanol???s Locomotor Stimulant Effects in Mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 593-602.	2.4	2
121	Animal models for the genetic study of human alcohol phenotypes. Alcohol Research, 2002, 26, 202-7.	1.0	5
122	Forward, relaxed, and reverse selection for reduced and enhanced sensitivity to ethanol's locomotor stimulant effects in mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 593-602.	2.4	19
123	Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes Behavioral Neuroscience, 2002, 116, 126-137.	1.2	14
124	Locomotor activity responses to ethanol, other alcohols and GABA-A acting compounds in forward- and reverse-selected FAST and SLOW mouse lines Behavioral Neuroscience, 2002, 116, 958-967.	1.2	16
125	Effect of forward and reverse selection for ethanol-induced locomotor response on other measures of ethanol sensitivity. Alcoholism: Clinical and Experimental Research, 2002, 26, 1322-9.	2.4	3
126	Attenuation of ethanol-induced conditioned taste aversion in mice sensitized to the locomotor stimulant effects of ethanol Behavioral Neuroscience, 2001, 115, 146-153.	1.2	31

#	Article	IF	CITATIONS
127	Voluntary ethanol drinking in C57BL/6J and DBA/2J mice before and after sensitization to the locomotor stimulant effects of ethanol. Psychopharmacology, 2001, 155, 91-99.	3.1	110
128	QTL analysis and genomewide mutagenesis in mice: complementary genetic approaches to the dissection of complex traits. Behavior Genetics, 2001, 31, 5-15.	2.1	78
129	Transgenic and Gene "Knockout" Models in Alcohol Research. Alcoholism: Clinical and Experimental Research, 2001, 25, 60S-66S.	2.4	5
130	Transgenic and Gene ???Knockout??? Models in Alcohol Research. Alcoholism: Clinical and Experimental Research, 2001, 25, 60S-66S.	2.4	7
131	Mapping genes that regulate density of dopamine transporters and correlated behaviors in recombinant inbred mice. Journal of Pharmacology and Experimental Therapeutics, 2001, 298, 634-43.	2.5	43
132	Sensitivity to ethanol-induced motor incoordination in 5-HT1B receptor null mutant mice is task-dependent: Implications for behavioral assessment of genetically altered mice Behavioral Neuroscience, 2000, 114, 401-409.	1.2	67
133	Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nature Genetics, 2000, 24, 403-409.	21.4	564
134	Sensitivity to Ethanol-Induced Motor Incoordination in FAST and SLOW Selectively Bred Mice. Pharmacology Biochemistry and Behavior, 2000, 66, 241-247.	2.9	13
135	Sensitivity to ethanol-induced motor incoordination in 5-HT(1B) receptor null mutant mice is task-dependent: implications for behavioral assessment of genetically altered mice. Behavioral Neuroscience, 2000, 114, 401-9.	1.2	20
136	Ethanol-Induced Expression of c-Fos Differentiates the FAST and SLOW Selected Lines of Mice. Alcoholism: Clinical and Experimental Research, 1999, 23, 87-95.	2.4	18
137	Complications associated with genetic background effects in research using knockout mice. Psychopharmacology, 1999, 147, 5-7.	3.1	147
138	Ontogeny of Ethanol-Induced Locomotor Activity and Hypothermia Differences in Selectively Bred FAST and SLOW Mice. Pharmacology Biochemistry and Behavior, 1999, 62, 339-347.	2.9	7
139	Identifying genes for alcohol and drug sensitivity: recent progress and future directions. Trends in Neurosciences, 1999, 22, 173-179.	8.6	236
140	Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nature Neuroscience, 1998, 1, 610-615.	14.8	236
141	MK-801 Potentiates Ethanol's Effects on Locomotor Activity in Mice. Pharmacology Biochemistry and Behavior, 1998, 59, 135-143.	2.9	47
142	Genes on mouse Chromosomes 2 and 9 determine variation in ethanol consumption. Mammalian Genome, 1998, 9, 936-941.	2.2	109
143	High genetic susceptibility to ethanol withdrawal predicts low ethanol consumption. Mammalian Genome, 1998, 9, 983-990.	2.2	152
144	Duration of sensitization to the locomotor stimulant effects of ethanol in mice. Psychopharmacology, 1998, 135, 374-382.	3.1	81

#	Article	IF	CITATIONS
145	Localization of Genes Mediating Acute and Sensitized Locomotor Responses to Cocaine in BXD/Ty Recombinant Inbred Mice. Journal of Neuroscience, 1998, 18, 3023-3034.	3.6	98
146	Locomotor Activity in D2 Dopamine Receptor-Deficient Mice Is Determined by Gene Dosage, Genetic Background, and Developmental Adaptations. Journal of Neuroscience, 1998, 18, 3470-3479.	3.6	395
147	Seizure sensitivity and GABAergic modulation of ethanol sensitivity in selectively bred FAST and SLOW mouse lines. Journal of Pharmacology and Experimental Therapeutics, 1998, 287, 606-15.	2.5	31
148	Mice Lacking Dopamine D4 Receptors Are Supersensitive to Ethanol, Cocaine, and Methamphetamine. Cell, 1997, 90, 991-1001.	28.9	452
149	Naltrexone Effects on Ethanol Drinking Acquisition and on Established Ethanol Consumption in C57BL/6J Mice. Alcoholism: Clinical and Experimental Research, 1997, 21, 691-702.	2.4	68
150	Behavioral Sensitization to Ethanol: Genetics and the Effects of Stress. Pharmacology Biochemistry and Behavior, 1997, 57, 487-493.	2.9	128
151	Short-term selective breeding as a tool for QTL mapping: ethanol preference drinking in mice. Behavior Genetics, 1997, 27, 55-66.	2.1	131
152	Behavior Genetics of Drug Sensitization. Critical Reviews in Neurobiology, 1997, 11, 21-33.	3.1	77
153	Naltrexone effects on ethanol drinking acquisition and on established ethanol consumption in C57BL/6J mice. Alcoholism: Clinical and Experimental Research, 1997, 21, 691-702.	2.4	22
154	Correlated Responses to Selection in FAST and SLOW Mice: Effects of Ethanol on Ataxia, Temperature, Sedation, and Withdrawal. Alcoholism: Clinical and Experimental Research, 1996, 20, 688-696.	2.4	43
155	Elevated alcohol consumption in null mutant mice lacking 5–HT1B serotonin receptors. Nature Genetics, 1996, 14, 98-101.	21.4	349
156	Neurochemical Bases of Locomotion and Ethanol Stimulant Effects. International Review of Neurobiology, 1996, 39, 243-282.	2.0	182
157	Evaluation of potential genetic associations between ethanol tolerance and sensitization in BXD/Ty recombinant inbred mice. Journal of Pharmacology and Experimental Therapeutics, 1996, 277, 613-23.	2.5	58
158	Effects of Acute and Repeated Ethanol Exposures on the Locomotor Activity of BXD Recombinant Inbred Mice. Alcoholism: Clinical and Experimental Research, 1995, 19, 269-278.	2.4	204
159	Bidirectional Selective Breeding for Ethanol Effects on Locomotor Activity: Characterization of FAST and SLOW Mice Through Selection Generation 35. Alcoholism: Clinical and Experimental Research, 1995, 19, 1234-1245.	2.4	60
160	Dopamine antagonist effects on locomotor activity in naive and ethanol-treated FAST and SLOW selected lines of mice. Psychopharmacology, 1995, 118, 28-36.	3.1	63
161	Critical role for glucocorticoid receptors in stress- and ethanol-induced locomotor sensitization. Journal of Pharmacology and Experimental Therapeutics, 1995, 275, 790-7.	2.5	63
162	Behavioral sensitization to drug stimulant effects in C57BL/6J and DBA/2J inbred mice Behavioral Neuroscience, 1994, 108, 789-803.	1.2	198

#	Article	IF	CITATIONS
163	Localization of Genes Affecting Alcohol Drinking in Mice. Alcoholism: Clinical and Experimental Research, 1994, 18, 931-941.	2.4	288
164	Ethanol Sensitivity of Brain NMDA Receptors in Mice Selectively Bred for Differences in Response to the Low-Dose Locomotor Stimulant Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 1994, 18, 1474-1481.	2.4	15
165	Differences in Ethanol Sensitivity of Brain NMDA Receptors of Long-Sleep and Short-Sleep Mice. Alcoholism: Clinical and Experimental Research, 1994, 18, 1482-1490.	2.4	13
166	Genetic determinants of sensitivity to ethanol in inbred mice Behavioral Neuroscience, 1994, 108, 186-195.	1.2	95
167	Genetic determinants of sensitivity to ethanol in inbred mice Behavioral Neuroscience, 1994, 108, 186-195.	1.2	58
168	Behavioral sensitization to drug stimulant effects in C57BL/6J and DBA/2J inbred mice Behavioral Neuroscience, 1994, 108, 789-803.	1.2	98
169	Quantitative trait loci (QTL) applications to substances of abuse: Physical dependence studies with nitrous oxide and ethanol in BXD mice. Behavior Genetics, 1993, 23, 213-222.	2.1	104
170	Locomotor Responses of FAST and SLOW Mice to Several Alcohols and Drugs of Abuse. Annals of the New York Academy of Sciences, 1992, 654, 499-501.	3.8	5
171	Acute sensitivity of FAST and SLOW mice to the effects of abused drugs on locomotor activity. Journal of Pharmacology and Experimental Therapeutics, 1992, 261, 525-33.	2.5	39
172	Locomotor Activity Responses to Ethanol in Selectively Bred Long- and Short-Sleep Mice, Two Inbred Mouse Strains, and Their F1 Hybrids. Alcoholism: Clinical and Experimental Research, 1991, 15, 255-261.	2.4	32
173	Genetic Analyses of the Biphasic Nature of the Alcohol Dose-Response Curve. Alcoholism: Clinical and Experimental Research, 1991, 15, 262-269.	2.4	92
174	Response to selection for ethanol-induced locomotor activation: genetic analyses and selection response characterization. Psychopharmacology, 1991, 103, 557-566.	3.1	80
175	Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology. Psychopharmacology, 1991, 104, 413-424.	3.1	167
176	Use of Recombinant Inbred Strains to Assess Vulnerability to Drug Abuse at the Genetic Level. Journal of Addictive Diseases, 1991, 10, 73-87.	1.3	26
177	Behavioral Studies of Genetic Differences in Alcohol Action. , 1991, , 25-104.		74
178	Distinctions among sedative, disinhibitory, and ataxic properties of ethanol in inbred and selectively bred mice. Psychopharmacology, 1990, 101, 93-99.	3.1	74
179	Estimation of Genetic Correlation: Interpretation of Experiments Using Selectively Bred and Inbred Animals. Alcoholism: Clinical and Experimental Research, 1990, 14, 141-151.	2.4	301
180	Selected mouse lines, alcohol and behavior. Experientia, 1989, 45, 805-827.	1.2	88

#	Article	IF	CITATIONS
181	A comparison of ethanol absorption and narcosis in Long- and Short-Sleep mice following intraperitoneal or intragastric ethanol administration. Alcohol, 1985, 2, 655-658.	1.7	17
182	Locomotor stimulant and intoxicant properties of methanol, ethanol, tertiary butanol and	0.0	7

Locomotor stimulant and intoxicant properties of methanol, ethanol, tertiary butanol and pentobarbital in Long-Sleep and Short-Sleep mice. Substance and Alcohol Actions/misuse, 1983, 4, 31-6. 182