Jun Seop Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5913071/jun-seop-lee-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 2,687 30 51 h-index g-index citations papers 2,980 63 9.4 5.54 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
60	Multiscale pore contained carbon nanofiber-based field-effect transistor biosensors for nesfatin-1 detection. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 6076-6083	7.3	7
59	Freestanding and Flexible EMnO@Carbon Sheet for Application as a Highly Sensitive Dimethyl Methylphosphonate Sensor. <i>ACS Omega</i> , 2021 , 6, 4988-4994	3.9	3
58	Recent Development of Flexible Tactile Sensors and Their Applications Sensors, 2021, 22,	3.8	6
57	Ruthenium Nanoparticle-Immobilized Porous Carbon Nanofibers for Nonenzymatic Dopamine Sensing. <i>ACS Applied Nano Materials</i> , 2021 , 4, 13683-13691	5.6	1
56	Ruthenium Decorated Polypyrrole Nanoparticles for Highly Sensitive Hydrogen Gas Sensors Using Component Ratio and Protonation Control. <i>Polymers</i> , 2020 , 12,	4.5	2
55	Comparative Study on the Formation and Oxidation-Level Control of Three-Dimensional Conductive Nanofilms for Gas Sensor Applications. <i>ACS Omega</i> , 2020 , 5, 2992-2999	3.9	3
54	Facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilm for highly sensitive H2 gas sensor. <i>Journal of Materials Science</i> , 2020 , 55, 5156-5165	4.3	9
53	Aptamer-Functionalized Three-Dimensional Carbon Nanowebs for Ultrasensitive and Free-Standing PDGF Biosensor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 20882-20890	9.5	11
52	Comparative Study on the Effect of Protonation Control for Resistive Gas Sensor Based on Close-Packed Polypyrrole Nanoparticles. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 1850	2.6	4
51	Recent Development of Morphology Controlled Conducting Polymer Nanomaterial-Based Biosensor. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 5889	2.6	4
50	Facile Synthesis of CoO-Incorporated Multichannel Carbon Nanofibers for Electrochemical Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 20613-20622	9.5	24
49	Comparative Studies on Two-Electrode Symmetric Supercapacitors Based on Polypyrrole:Poly(4-styrenesulfonate) with Different Molecular Weights of Poly(4-styrenesulfonate). <i>Polymers</i> , 2019 , 11,	4.5	12
48	A highly sensitive wireless nitrogen dioxide gas sensor based on an organic conductive nanocomposite paste. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8451-8459	13	30
47	Highly porous structured polyaniline nanocomposites for scalable and flexible high-performance supercapacitors. <i>Nanoscale</i> , 2019 , 11, 6462-6470	7.7	23
46	Recent Developments of the Solution-Processable and Highly Conductive Polyaniline Composites for Optical and Electrochemical Applications. <i>Polymers</i> , 2019 , 11,	4.5	15
45	Highly selective FET-type glucose sensor based on shape-controlled palladium nanoflower-decorated graphene. <i>Sensors and Actuators B: Chemical</i> , 2018 , 264, 216-223	8.5	25
44	Platinum nanoparticles immobilized on polypyrrole nanofibers for non-enzyme oxalic acid sensor. Journal of Materials Chemistry B, 2018 , 6, 1272-1278	7.3	13

(2015-2018)

43	Multidimensional Conductive Nanofilm-Based Flexible Aptasensor for Ultrasensitive and Selective HBsAg Detection. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 28412-28419	9.5	25
42	Facile synthesis of size-controlled FeO nanoparticle-decorated carbon nanotubes for highly sensitive HS detection <i>RSC Advances</i> , 2018 , 8, 31874-31880	3.7	7
41	Sulfur-Immobilized, Activated Porous Carbon Nanotube Composite Based Cathodes for Lithium-Sulfur Batteries. <i>Small</i> , 2017 , 13, 1602984	11	64
40	Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries. <i>Journal of Power Sources</i> , 2017 , 343, 54-59	8.9	67
39	Electrospun three-layered polymer nanofiber-based porous carbon nanotubes for high-capacity energy storage. <i>RSC Advances</i> , 2017 , 7, 201-207	3.7	11
38	Ultrasensitive and Selective Organic FET-type Nonenzymatic Dopamine Sensor Based on Platinum Nanoparticles-Decorated Reduced Graphene Oxide. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2017 , 9, 39526-39533	9.5	42
37	Fabrication of a one-dimensional tube-in-tube polypyrrole/tin oxide structure for highly sensitive DMMP sensor applications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17335-17340	13	27
36	Sulfur-Embedded Activated Multichannel Carbon Nanofiber Composites for Long-Life, High-Rate LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1601943	21.8	165
35	Wireless, Room Temperature Volatile Organic Compound Sensor Based on Polypyrrole Nanoparticle Immobilized Ultrahigh Frequency Radio Frequency Identification Tag. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 33139-33147	9.5	48
34	Highly ordered, polypyrrole-coated Co(OH)2 architectures for high-performance asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6603-6609	13	46
33	Multidimensional hybrid conductive nanoplate-based aptasensor for platelet-derived growth factor detection. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4447-4454	7.3	16
32	Ultrasensitive Bisphenol A Field-Effect Transistor Sensor Using an Aptamer-Modified Multichannel Carbon Nanofiber Transducer. <i>ACS Applied Materials & Description of the Property of the Party of the Property of the Propert</i>	9.5	53
31	Highly Sensitive and Selective Field-Effect-Transistor NonEnzyme Dopamine Sensors Based on Pt/Conducting Polymer Hybrid Nanoparticles. <i>Small</i> , 2015 , 11, 2399-406	11	37
30	Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag. <i>ACS Nano</i> , 2015 , 9, 7783-90	16.7	83
29	Platinum-decorated carbon nanoparticle/polyaniline hybrid paste for flexible wideband dipole tag-antenna application. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7029-7035	13	11
28	Poly(vinylidene fluoride)/NH2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor. ACS Applied Materials & Description (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988) (1988)	9.5	65
27	Polypropylene/Polyaniline Nanofiber/Reduced Graphene Oxide Nanocomposite with Enhanced Electrical, Dielectric, and Ferroelectric Properties for a High Energy Density Capacitor. <i>ACS Applied Materials & Description</i> , 2015, 7, 22301-14	9.5	75
26	Multidimensional MnO2 nanohair-decorated hybrid multichannel carbon nanofiber as an electrode material for high-performance supercapacitors. <i>Nanoscale</i> , 2015 , 7, 16026-33	7.7	44

25	Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage. <i>Energy and Environmental Science</i> , 2015 , 8, 3030-3039	35.4	102
24	Flower-like Palladium Nanoclusters Decorated Graphene Electrodes for Ultrasensitive and Flexible Hydrogen Gas Sensing. <i>Scientific Reports</i> , 2015 , 5, 12294	4.9	65
23	Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors. <i>Nanoscale</i> , 2015 , 7, 20665-73	7.7	19
22	Platinum-decorated reduced graphene oxide/polyaniline:poly(4-styrenesulfonate) hybrid paste for flexible dipole tag-antenna applications. <i>Nanoscale</i> , 2015 , 7, 3668-74	7.7	7
21	Detection of hazardous gas using multidemensional porous iron oxide nanorods-decorated carbon nanoparticles. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	16
20	Urchin-like polypyrrole nanoparticles for highly sensitive and selective chemiresistive sensor application. <i>Nanoscale</i> , 2014 , 6, 4188-94	7.7	46
19	Hetero-structured semiconductor nanomaterials for photocatalytic applications. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 363-371	6.3	57
18	Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. <i>Nanoscale</i> , 2014 , 6, 15181-95	7.7	81
17	A metal-oxide nanofiber-decorated three-dimensional graphene hybrid nanostructured flexible electrode for high-capacity electrochemical capacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11922	13	30
16	Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications. Journal of Materials Chemistry A, 2014 , 2, 3364-3371	13	73
15	High-sensitivity hydrogen gas sensors based on Pd-decorated nanoporous poly(aniline-co-aniline-2-sulfonic acid):poly(4-styrenesulfonic acid). <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1955-1966	13	22
14	Aptamer-Functionalized Multidimensional Conducting-Polymer Nanoparticles for an Ultrasensitive and Selective Field-Effect-Transistor Endocrine-Disruptor Sensors. <i>Advanced Functional Materials</i> , 2014 , 24, 6145-6153	15.6	30
13	Aptamer-functionalized hybrid carbon nanofiber FET-type electrode for a highly sensitive and selective platelet-derived growth factor biosensor. <i>ACS Applied Materials & Discourse (Control of the Control of the Contr</i>	5 ⁹ -65	46
12	Three-dimensional scaffolds of carbonized polyacrylonitrile for bone tissue regeneration. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9213-7	16.4	28
11	Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors. <i>ChemSusChem</i> , 2014 , 7, 1676-83	8.3	37
10	Three-Dimensional Scaffolds of Carbonized Polyacrylonitrile for Bone Tissue Regeneration. <i>Angewandte Chemie</i> , 2014 , 126, 9367-9371	3.6	12
9	Multidimensional polypyrrole/iron oxyhydroxide hybrid nanoparticles for chemical nerve gas agent sensing application. <i>ACS Nano</i> , 2013 , 7, 10139-47	16.7	46
8	WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9099	13	61

LIST OF PUBLICATIONS

7	Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high-capacity energy storage. <i>Small</i> , 2013 , 9, 248-54	11	83
6	Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. <i>ACS Nano</i> , 2012 , 6, 1486-93	16.7	206
5	Facile synthesis of SnO2 nanofibers decorated with N-doped ZnO nanonodules for visible light photocatalysts using single-nozzle co-electrospinning. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14565		47
4	One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1521-1526		80
3	Ultrasensitive and selective recognition of peptide hormone using close-packed arrays of hPTHR-conjugated polymer nanoparticles. <i>ACS Nano</i> , 2012 , 6, 5549-58	16.7	47
2	Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. <i>Nano Letters</i> , 2012 , 12, 2797-802	11.5	198
1	Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. <i>ACS Nano</i> , 2011 , 5, 7992-8001	16.7	166