## Patrick J Hussey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5912878/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.                                                             | 9.1  | 3,122     |
| 2  | CONTROL OF THE ACTIN CYTOSKELETON IN PLANT CELL GROWTH. Annual Review of Plant Biology, 2006, 57, 109-125.                                                             | 18.7 | 277       |
| 3  | The ADF/cofilin family: actin-remodeling proteins. Genome Biology, 2002, 3, reviews3007.1.                                                                             | 9.6  | 261       |
| 4  | Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. Journal of Experimental Botany, 2009, 60, 1207-1218. | 4.8  | 260       |
| 5  | MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nature Cell Biology, 2002, 4, 711-714.                                                 | 10.3 | 220       |
| 6  | The Arabidopsis Microtubule-Associated Protein AtMAP65-1: Molecular Analysis of Its Microtubule<br>Bundling Activity. Plant Cell, 2004, 16, 2035-2047.                 | 6.6  | 199       |
| 7  | The Plant Microtubule-Associated Protein AtMAP65-3/PLE Is Essential for Cytokinetic Phragmoplast<br>Function. Current Biology, 2004, 14, 412-417.                      | 3.9  | 194       |
| 8  | Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nature Cell Biology, 2009, 11, 1347-1354.               | 10.3 | 192       |
| 9  | The Plant Cytoskeleton, NET3C, and VAP27 Mediate the Link between the Plasma Membrane and<br>Endoplasmic Reticulum. Current Biology, 2014, 24, 1397-1405.              | 3.9  | 180       |
| 10 | A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. Journal of Cell Biology, 2007, 178, 897-904.      | 5.2  | 179       |
| 11 | The profilin multigene family of maize: differential expression of three isoforms. Plant Journal, 1993, 4, 631-641.                                                    | 5.7  | 163       |
| 12 | Regulation of the Pollen-Specific Actin-Depolymerizing Factor LIADF1. Plant Cell, 2002, 14, 2915-2927.                                                                 | 6.6  | 160       |
| 13 | The Actin-Interacting Protein AIP1 Is Essential for Actin Organization and Plant Development. Current Biology, 2004, 14, 145-149.                                      | 3.9  | 159       |
| 14 | Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature, 1998, 393, 260-263.                                                   | 27.8 | 152       |
| 15 | Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization.<br>Trends in Plant Science, 2002, 7, 492-498.                          | 8.8  | 149       |
| 16 | The POLARIS Peptide of Arabidopsis Regulates Auxin Transport and Root Growth via Effects on Ethylene Signaling. Plant Cell, 2006, 18, 3058-3072.                       | 6.6  | 146       |
| 17 | A new class of microtubule-associated proteins in plants. Nature Cell Biology, 2000, 2, 750-753.                                                                       | 10.3 | 141       |
| 18 | Control of the AtMAP65-1 interaction with microtubules through the cell cycle. Journal of Cell Science, 2006, 119, 3227-3237.                                          | 2.0  | 141       |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins<br>MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Molecular Biology, 2002, 50, 915-924.                              | 3.9 | 139       |
| 20 | Green Fluorescent Protein-mTalin Causes Defects in Actin Organization and Cell Expansion in<br>Arabidopsis and Inhibits Actin Depolymerizing Factor's Actin Depolymerizing Activity in Vitro. Plant<br>Physiology, 2004, 136, 3990-3998. | 4.8 | 134       |
| 21 | Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant Journal, 1998, 14, 187-193.                               | 5.7 | 128       |
| 22 | A Rab-E GTPase Mutant Acts Downstream of the Rab-D Subclass in Biosynthetic Membrane Traffic to the<br>Plasma Membrane in Tobacco Leaf Epidermis. Plant Cell, 2005, 17, 2020-2036.                                                       | 6.6 | 124       |
| 23 | Re-organisation of the cytoskeleton during developmental programmed cell death inPicea<br>abiesembryos. Plant Journal, 2003, 33, 813-824.                                                                                                | 5.7 | 122       |
| 24 | Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actinâ€binding<br>proteins and cause defects in cell expansion upon aberrant expression. New Phytologist, 2005, 168,<br>529-540.                  | 7.3 | 122       |
| 25 | Plant Endoplasmic Reticulum–Plasma Membrane Contact Sites. Trends in Plant Science, 2017, 22,<br>289-297.                                                                                                                                | 8.8 | 122       |
| 26 | The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant Journal, 1997, 12, 1035-1043.                              | 5.7 | 121       |
| 27 | The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. Journal of Cell Science, 2010, 123, 1209-1215.                                                            | 2.0 | 117       |
| 28 | A Superfamily of Actin-Binding Proteins at the Actin-Membrane Nexus of Higher Plants. Current<br>Biology, 2012, 22, 1595-1600.                                                                                                           | 3.9 | 115       |
| 29 | Oscillatory Increases in Alkalinity Anticipate Growth and May Regulate Actin Dynamics in Pollen Tubes of Lily. Plant Cell, 2006, 18, 2182-2193.                                                                                          | 6.6 | 112       |
| 30 | Plant <scp>VAP</scp> 27 proteins: domain characterization, intracellular localization and role in plant development. New Phytologist, 2016, 210, 1311-1326.                                                                              | 7.3 | 110       |
| 31 | Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C Plant Journal, 1998, 16, 689-696.                                                                          | 5.7 | 106       |
| 32 | Dinitroaniline herbicide resistance and the microtubule cytoskeleton. Trends in Plant Science, 1999, 4, 112-116.                                                                                                                         | 8.8 | 104       |
| 33 | Pollen Profilin Function Depends on Interaction with Proline-Rich Motifs. Plant Cell, 1998, 10, 981-993.                                                                                                                                 | 6.6 | 102       |
| 34 | Strategies of actin reorganisation in plant cells. Journal of Cell Science, 2010, 123, 3019-3028.                                                                                                                                        | 2.0 | 100       |
| 35 | A Divergent Cellular Role for the FUSED Kinase Family in the Plant-Specific Cytokinetic Phragmoplast.<br>Current Biology, 2005, 15, 2107-2111.                                                                                           | 3.9 | 98        |
| 36 | Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS<br>Letters, 2001, 499, 97-100.                                                                                                       | 2.8 | 97        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Arabidopsis NAP1 Is Essential for Arp2/3-Dependent Trichome Morphogenesis. Current Biology, 2004, 14, 1410-1414.                                                                                                                            | 3.9  | 95        |
| 38 | ACTIN BINDING PROTEIN29 from Lilium Pollen Plays an Important Role in Dynamic Actin Remodeling.<br>Plant Cell, 2007, 19, 1930-1946.                                                                                                         | 6.6  | 95        |
| 39 | The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development<br>(Cambridge), 2007, 134, 967-977.                                                                                                               | 2.5  | 91        |
| 40 | The C-Terminal Variable Region Specifies the Dynamic Properties<br>of <i>Arabidopsis</i> Microtubule-Associated Protein MAP65 Isotypes. Plant Cell, 2009, 20, 3346-3358.                                                                    | 6.6  | 88        |
| 41 | Actin-Depolymerizing Factor2-Mediated Actin Dynamics Are Essential for Root-Knot Nematode<br>Infection of <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2963-2979.                                                                          | 6.6  | 87        |
| 42 | Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nature Communications, 2019, 10, 5132.                                                                                    | 12.8 | 86        |
| 43 | Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched<br>endoplasmic reticulum–plasma membrane contact sites. Journal of Experimental Botany, 2016, 67,<br>6161-6171.                        | 4.8  | 84        |
| 44 | Arabidopsis NAP1 Regulates the Formation of Autophagosomes. Current Biology, 2016, 26, 2060-2069.                                                                                                                                           | 3.9  | 83        |
| 45 | Arabidopsishomologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Letters, 2004, 567, 302-306.                                                                                                   | 2.8  | 80        |
| 46 | α-Tubulin gene family of maize (Zea mays L.). Journal of Molecular Biology, 1992, 227, 81-96.                                                                                                                                               | 4.2  | 74        |
| 47 | The ARP2/3 Complex Mediates Guard Cell Actin Reorganization and Stomatal Movement in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2031-2040.                                                                                                  | 6.6  | 74        |
| 48 | Actin–binding proteins in theArabidopsisgenome database: properties of functionally distinct plant<br>actin–depolymerizing factors/cofilins. Philosophical Transactions of the Royal Society B: Biological<br>Sciences, 2002, 357, 791-798. | 4.0  | 73        |
| 49 | Arp2/3 and SCAR: plants move to the fore. Nature Reviews Molecular Cell Biology, 2005, 6, 954-964.                                                                                                                                          | 37.0 | 71        |
| 50 | <i>Arabidopsis</i> CAP1 – a key regulator of actin organisation and development. Journal of Cell Science, 2007, 120, 2609-2618.                                                                                                             | 2.0  | 70        |
| 51 | Arp2/3 and †The Shape of things to come'. Current Opinion in Plant Biology, 2003, 6, 561-567.                                                                                                                                               | 7.1  | 62        |
| 52 | <i>Arabidopsis</i> Rab-E GTPases exhibit a novel interaction with a plasma-membrane<br>phosphatidylinositol-4-phosphate 5-kinase. Journal of Cell Science, 2009, 122, 4383-4392.                                                            | 2.0  | 60        |
| 53 | Dynamic interaction of NtMAP65-1a with microtubules in vivo. Journal of Cell Science, 2005, 118, 3195-3201.                                                                                                                                 | 2.0  | 55        |
| 54 | Prieurianin/endosidin 1 is an actinâ€stabilizing small molecule identified from a chemical genetic screen<br>for circadian clock effectors in <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 71, 338-352.                               | 5.7  | 53        |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Interaction of pollen-specific actin-depolymerizing factor with actin. Plant Journal, 2001, 25, 203-212.                                                                                        | 5.7  | 53        |
| 56 | The Microtubule Plus-End Tracking Proteins SPR1 and EB1b Interact to Maintain Polar Cell Elongation and Directional Organ Growth in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 4409-4425.      | 6.6  | 52        |
| 57 | Microinjection of pollenâ€specific actinâ€depolymerizing factor, ZmADF1, reorientates Fâ€actin strands<br>inTradescantiastamen hair cells. Plant Journal, 1998, 14, 353-357.                    | 5.7  | 49        |
| 58 | Suppression of endogenous alpha and beta tubulin synthesis in transgenic maize calli overexpressing<br>alpha and beta tubulins. Plant Journal, 1998, 16, 297-304.                               | 5.7  | 42        |
| 59 | Dinitroaniline herbicide-resistant transgenic tobacco plants generated by co-overexpression of a mutant α-tubulin and a β-tubulin. Nature Biotechnology, 1999, 17, 712-716.                     | 17.5 | 41        |
| 60 | The Origin of Phragmoplast Asymmetry. Current Biology, 2011, 21, 1924-1930.                                                                                                                     | 3.9  | 41        |
| 61 | Double mutation in Eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to<br>dinitroaniline and phosphorothioamidate herbicides. Plant Journal, 1999, 18, 669-674. | 5.7  | 40        |
| 62 | The Caspase-Related Protease Separase (EXTRA SPINDLE POLES) Regulates Cell Polarity and Cytokinesis<br>in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 2171-2186.                              | 6.6  | 40        |
| 63 | Actin organization and root hair development are disrupted by ethanolâ€induced overexpression of Arabidopsis actin interacting protein 1 (AIP1). New Phytologist, 2007, 174, 57-62.             | 7.3  | 39        |
| 64 | Leaves of isopreneâ€emitting tobacco plants maintain PSII stability at high temperatures. New<br>Phytologist, 2019, 223, 1307-1318.                                                             | 7.3  | 38        |
| 65 | Multiple isotypes of α- and β-tubulin in the plant Phaseolus vulgaris. FEBS Letters, 1985, 181, 113-118.                                                                                        | 2.8  | 37        |
| 66 | A novel plant actin-microtubule bridging complex regulates cytoskeletal and ER structure at ER-PM contact sites. Current Biology, 2021, 31, 1251-1260.e4.                                       | 3.9  | 37        |
| 67 | Interactions between plant endomembrane systems and the actin cytoskeleton. Frontiers in Plant Science, 2015, 6, 422.                                                                           | 3.6  | 35        |
| 68 | BODIPY probes to study peroxisome dynamics in vivo. Plant Journal, 2010, 62, 529-538.                                                                                                           | 5.7  | 34        |
| 69 | An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants. Current Biology, 2018,<br>28, 2136-2144.e7.                                                                          | 3.9  | 32        |
| 70 | A Compartmental Model Analysis of Integrative and Self-Regulatory Ion Dynamics in Pollen Tube<br>Growth. PLoS ONE, 2010, 5, e13157.                                                             | 2.5  | 31        |
| 71 | Identification of a MAP65 isoform involved in directional expansion of plant cells. FEBS Letters, 2003, 534, 161-163.                                                                           | 2.8  | 30        |
| 72 | NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction. Journal of Experimental Botany, 2017, 68, 1441-1450.                                                 | 4.8  | 29        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Plant microtubule-associated proteins: the HEAT is off in temperature-sensitive mor1. Trends in Plant Science, 2001, 6, 389-392.                                                                                           | 8.8  | 28        |
| 74 | Interaction of elongation factor 1? fromZea mays (ZmEF-1?) with F-actin and interplay with the maize actin severing protein, ZmADF3. Cytoskeleton, 2001, 49, 104-111.                                                      | 4.4  | 28        |
| 75 | The evolution of the actin binding NET superfamily. Frontiers in Plant Science, 2014, 5, 254.                                                                                                                              | 3.6  | 27        |
| 76 | Connecting membranes to the actin cytoskeleton. Current Opinion in Plant Biology, 2017, 40, 71-76.                                                                                                                         | 7.1  | 26        |
| 77 | The proliferating cell nuclear antigen (PCNA) gene family in Zea mays is composed of two members<br>that have similar expression programmes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms,<br>1997, 1353, 1-6. | 2.4  | 24        |
| 78 | The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells. Journal of Experimental Botany, 2008, 59, 3087-3098.                                                  | 4.8  | 23        |
| 79 | MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9884-9895.          | 7.1  | 23        |
| 80 | Molecular cloning of a maize cDNA clone encoding a putative proliferating cell nuclear antigen.<br>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 119-121.                                          | 2.4  | 22        |
| 81 | A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice. Journal of Biological Chemistry, 2012, 287, 4023-4032.                                                       | 3.4  | 22        |
| 82 | Actin–membrane interactions mediated by <scp>NETWORKED</scp> 2 in Arabidopsis pollen tubes<br>through associations with Pollen Receptorâ€Like Kinase 4 and 5. New Phytologist, 2017, 216, 1170-1180.                       | 7.3  | 22        |
| 83 | Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics, cell wall and ion dynamics. Frontiers in Plant Science, 2014, 5, 392.                                                          | 3.6  | 18        |
| 84 | Modelling dynamic plant cells. Current Opinion in Plant Biology, 2010, 13, 744-749.                                                                                                                                        | 7.1  | 16        |
| 85 | Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in<br>Arabidopsis. Journal of Experimental Botany, 2017, 68, 885-898.                                                               | 4.8  | 16        |
| 86 | A Thermodynamic Model of Microtubule Assembly and Disassembly. PLoS ONE, 2009, 4, e6378.                                                                                                                                   | 2.5  | 15        |
| 87 | Microtubules do the twist. Nature, 2002, 417, 128-129.                                                                                                                                                                     | 27.8 | 14        |
| 88 | Epidermal expression of a sterol biosynthesis gene regulates root growth by a non-cell autonomous<br>mechanism in <i>Arabidopsis</i> . Development (Cambridge), 2018, 145, .                                               | 2.5  | 14        |
| 89 | Plant ER-PM Contact Sites in Endocytosis and Autophagy: Does the Local Composition of Membrane Phospholipid Play a Role?. Frontiers in Plant Science, 2019, 10, 23.                                                        | 3.6  | 13        |
| 90 | TOXIN EVOLUTION IN SCORPION VENOM: EVIDENCE FOR TOXIN DIVERGENCE UNDER STRONG NEGATIVE SELECTION INLEIURUS QUINQUESTRIATUSSUBSPECIES. Toxin Reviews, 2001, 20, 229-244.                                                    | 1.5  | 11        |

| #   | ARTICLE                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | <i><scp>EXTRA SPINDLE POLES</scp></i> (Separase) controls anisotropic cell expansion in Norway<br>spruce ( <i>Picea abies</i> ) embryos independently of its role in anaphase progression. New<br>Phytologist, 2016, 212, 232-243. | 7.3 | 11        |
| 92  | Autophagosome Biogenesis in Plants: An Actin Cytoskeleton Perspective. Trends in Plant Science, 2020,<br>25, 850-858.                                                                                                              | 8.8 | 11        |
| 93  | NETWORKED2â€subfamily proteins regulate the cortical actin cytoskeleton of growing pollen tubes and polarised pollen tube growth. New Phytologist, 2021, 231, 152-164.                                                             | 7.3 | 11        |
| 94  | The Arabidopsis R NARE VAMP714 is essential for polarisation of PIN proteins and auxin responses. New Phytologist, 2021, 230, 550-566.                                                                                             | 7.3 | 10        |
| 95  | Strategies of actin reorganisation in plant cells. Journal of Cell Science, 2010, 123, 3029-3029.                                                                                                                                  | 2.0 | 8         |
| 96  | Membrane contact sites and cytoskeletonâ€membrane interactions in autophagy. FEBS Letters, 2022, 596, 2093-2103.                                                                                                                   | 2.8 | 8         |
| 97  | Immunological homologues of theArabidopsis thaliana ?1 tubulin are polyglutamylated inNicotiana<br>tabacum. Protoplasma, 1998, 203, 138-143.                                                                                       | 2.1 | 7         |
| 98  | Immunolocalization of Proteins in Somatic Embryos. Methods in Molecular Biology, 2008, 427, 157-171.                                                                                                                               | 0.9 | 6         |
| 99  | Blobs and curves: object-based colocalisation for plant cells. Functional Plant Biology, 2015, 42, 471.                                                                                                                            | 2.1 | 5         |
| 100 | Comparison of the in vitro translated polypeptides from maize shoot, pollen and germinated pollen mRNAs. FEBS Letters, 1994, 350, 117-121.                                                                                         | 2.8 | 4         |
| 101 | Elucidating the regulation of complex signalling systems in plant cells. Biochemical Society Transactions, 2014, 42, 219-223.                                                                                                      | 3.4 | 4         |
| 102 | Characterization of Proteins Localized to Plant ER-PM Contact Sites. Methods in Molecular Biology, 2018, 1691, 23-31.                                                                                                              | 0.9 | 4         |
| 103 | Interaction of pollenâ€specific actinâ€depolymerizing factor with actin. Plant Journal, 2001, 25, 203-212.                                                                                                                         | 5.7 | 3         |
| 104 | The Cytoskeleton and Signal Transduction: Role and Regulation of Plant Actin- and Microtubule-Binding Proteins. , 0, , 244-272.                                                                                                    |     | 2         |
| 105 | A Novel Plant Actin-Microtubule Bridging Complex Regulates Cytoskeletal and ER Structure at<br>Endoplasmic Reticulum-Plasma Membrane Contact Sites (EPCS), SSRN Electronic Journal, 0, , .                                         | 0.4 | 1         |