Robin Chazdon

List of Publications by Citations

Source: https://exaly.com/author-pdf/5912725/robin-chazdon-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

211	20,495	71	141
papers	citations	h-index	g-index
223 ext. papers	23,880 ext. citations	7.1 avg, IF	7.29 L-index

#	Paper	IF	Citations
211	A new statistical approach for assessing similarity of species composition with incidence and abundance data. <i>Ecology Letters</i> , 2004 , 8, 148-159	10	1205
210	Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. <i>Journal of Plant Ecology</i> , 2012 , 5, 3-21	1.7	1156
209	Beyond deforestation: restoring forests and ecosystem services on degraded lands. <i>Science</i> , 2008 , 320, 1458-60	33.3	1015
208	Tropical forest recovery: legacies of human impact and natural disturbances. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2003 , 6, 51-71	3	634
207	Prospects for tropical forest biodiversity in a human-modified world. <i>Ecology Letters</i> , 2009 , 12, 561-82	10	602
206	Biomass resilience of Neotropical secondary forests. <i>Nature</i> , 2016 , 530, 211-4	50.4	557
205	Estimation of tropical forest structural characteristics using large-footprint lidar. <i>Remote Sensing of Environment</i> , 2002 , 79, 305-319	13.2	455
204	Photosynthetic Light Environments in a Lowland Tropical Rain Forest in Costa Rica. <i>Journal of Ecology</i> , 1984 , 72, 553	6	400
203	The potential for species conservation in tropical secondary forests. Conservation Biology, 2009, 23, 140	0 6 -17	399
202	Abundance-based similarity indices and their estimation when there are unseen species in samples. <i>Biometrics</i> , 2006 , 62, 361-71	1.8	377
201	Rates of change in tree communities of secondary Neotropical forests following major disturbances. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2007 , 362, 273-89	5.8	363
200	Beyond Reserves: A Research Agenda for Conserving Biodiversity in Human-modified Tropical Landscapes. <i>Biotropica</i> , 2009 , 41, 142-153	2.3	346
199	Second Growth 2014 ,		331
198	Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. <i>Conservation Biology</i> , 2008 , 22, 8-15	6	321
197	Sunflecks and Their Importance to Forest Understorey Plants. <i>Advances in Ecological Research</i> , 1988 , 18, 1-63	4.6	296
196	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. <i>Science Advances</i> , 2016 , 2, e1501639	14.3	289
195	The Importance of Sunflecks for Forest Understory Plants. <i>BioScience</i> , 1991 , 41, 760-766	5.7	289

19.	SPATIAL HETEROGENEITY OF LIGHT AND WOODY SEEDLING REGENERATION IN TROPICAL WET FORESTS. <i>Ecology</i> , 1999 , 80, 1908-1926	4.6	277	
19	Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. <i>Biological Reviews</i> , 2017 , 92, 326-340	13.5	272	
19:	An estimate of the number of tropical tree species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7472-7	11.5	258	
19:	When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. <i>Ambio</i> , 2016 , 45, 538-50	6.5	246	
19	Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. <i>Oecologia</i> , 1999 , 121, 1-11	2.9	240	
18	Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. <i>Biotropica</i> , 2016 , 48, 716-730	2.3	227	
18	Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. <i>Science Advances</i> , 2017 , 3, e1701345	14.3	222	
18	Rapid Recovery of Biomass, Species Richness, and Species Composition in a Forest Chronosequence in Northeastern Costa Rica. <i>Biotropica</i> , 2009 , 41, 608-617	2.3	217	
180	Resilience of tropical rain forests: tree community reassembly in secondary forests. <i>Ecology Letters</i> , 2009 , 12, 385-94	10	213	
18	Successional dynamics in Neotropical forests are as uncertain as they are predictable. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2015 , 112, 8013-8	11.5	206	
18.	FOREST STRUCTURE, CANOPY ARCHITECTURE, AND LIGHT TRANSMITTANCE IN TROPICAL WET FORESTS. <i>Ecology</i> , 2001 , 82, 2707-2718	4.6	206	
18	Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. <i>Oecologia</i> , 2002 , 131, 165-174	2.9	203	
18:	A Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration. <i>Conservation Letters</i> , 2017 , 10, 125-132	6.9	201	
18:	Photographic estimation of photosynthetically active radiation: evaluation of a computerized technique. <i>Oecologia</i> , 1987 , 73, 525-532	2.9	197	
180	O Global priority areas for ecosystem restoration. <i>Nature</i> , 2020 , 586, 724-729	50.4	175	
179	Global restoration opportunities in tropical rainforest landscapes. <i>Science Advances</i> , 2019 , 5, eaav3223	14.3	172	
17	Photosynthetic responses to light variation in rainforest species: I. Induction under constant and fluctuating light conditions. <i>Oecologia</i> , 1986 , 69, 517-523	2.9	168	
17	Structure and floristics of secondary and old-growth forest stands in lowland Costa Rica. <i>Plant Ecology</i> , 1997 , 132, 107-120	1.7	166	

176	Photosynthetic responses to light variation in rainforest species: II. Carbon gain and photosynthetic efficiency during lightflecks. <i>Oecologia</i> , 1986 , 69, 524-531	2.9	164
175	Biodiversity recovery of Neotropical secondary forests. <i>Science Advances</i> , 2019 , 5, eaau3114	14.3	161
174	Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. <i>Ecology Letters</i> , 2010 , 13, 1503-14	10	155
173	Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. <i>Remote Sensing of Environment</i> , 2011 , 115, 2836-2849	13.2	154
172	A two-stage probabilistic approach to multiple-community similarity indices. <i>Biometrics</i> , 2008 , 64, 1178-	- 8:6 8	144
171	Light Variation and Carbon Gain in Rain Forest Understorey Palms. <i>Journal of Ecology</i> , 1986 , 74, 995	6	141
170	From Management to Stewardship: Viewing Forests As Complex Adaptive Systems in an Uncertain World. <i>Conservation Letters</i> , 2015 , 8, 368-377	6.9	140
169	Viewing forests through the lens of complex systems science. <i>Ecosphere</i> , 2014 , 5, art1	3.1	140
168	Plant Ediversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. <i>Journal of Ecology</i> , 2013 , 101, 1449-1458	6	138
167	Quantifying temporal change in biodiversity: challenges and opportunities. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20121931	4.4	137
166	COMMUNITY AND PHYLOGENETIC STRUCTURE OF REPRODUCTIVE TRAITS OF WOODY SPECIES IN WET TROPICAL FORESTS. <i>Ecological Monographs</i> , 2003 , 73, 331-348	9	133
165	The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. <i>Ecology Letters</i> , 2014 , 17, 1158-67	10	130
164	A novel statistical method for classifying habitat generalists and specialists. <i>Ecology</i> , 2011 , 92, 1332-43	4.6	130
163	Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 8101-6	11.5	122
162	Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. <i>Biological Conservation</i> , 2010 , 143, 2301-2313	6.2	122
161	Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. <i>Nature Ecology and Evolution</i> , 2019 , 3, 62-70	12.3	118
160	Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 5616	5 ⁻¹²¹ 1 ⁵	116
159	Photosynthetic Responses of Tropical Forest Plants to Contrasting Light Environments 1996 , 5-55		116

158	Restoring forests as a means to many ends. Science, 2019, 365, 24-25	33.3	111
157	Phylogenetic classification of the world's tropical forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1837-1842	11.5	107
156	Mapping carbon accumulation potential from global natural forest regrowth. <i>Nature</i> , 2020 , 585, 545-55	50 50.4	104
155	Determinants of photosynthetic capacity in six rainforest Piper species. <i>Oecologia</i> , 1987 , 73, 222-230	2.9	97
154	Demographic drivers of successional changes in phylogenetic structure across life-history stages in plant communities. <i>Ecology</i> , 2012 , 93, S70-S82	4.6	91
153	Biodiversity and human well-being: an essential link for sustainable development. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	89
152	Ethnobotany of Woody Species in Second-Growth, Old-Growth, and Selectively Logged Forests of Northeastern Costa Rica. <i>Conservation Biology</i> , 1999 , 13, 1312-1322	6	88
151	Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. <i>Biotropica</i> , 2016 , 48, 709-715	2.3	87
150	Photosynthetic plasticity of two rain forest shrubs across natural gap transects. <i>Oecologia</i> , 1992 , 92, 586-595	2.9	87
149	Composition and Dynamics of Functional Groups of Trees During Tropical Forest Succession in Northeastern Costa Rica. <i>Biotropica</i> , 2010 , 42, 31-40	2.3	85
148	Vegetation Structure, Composition, and Species Richness Across a 56-year Chronosequence of Dry Tropical Forest on Providencia Island, Colombia1. <i>Biotropica</i> , 2005 , 37, 520-530	2.3	83
147	Correlates of extinction proneness in tropical angiosperms. <i>Diversity and Distributions</i> , 2008 , 14, 1-10	5	82
146	The Costs of Leaf Support in Understory Palms: Economy Versus Safety. <i>American Naturalist</i> , 1986 , 127, 9-30	3.7	81
145	Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests. <i>Forest Ecology and Management</i> , 2008 , 255, 3716-3725	3.9	76
144	Successional dynamics of woody seedling communities in wet tropical secondary forests. <i>Journal of Ecology</i> , 2005 , 93, 1071-1084	6	76
143	Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. <i>Ecology</i> , 2009 , 90, 109-21	4.6	75
142	Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2012 , 14, 79-87	3	72
141	Beyond hectares: four principles to guide reforestation in the context of tropical forest and landscape restoration. <i>Restoration Ecology</i> , 2017 , 25, 491-496	3.1	71

140	Lianas and self-supporting plants during tropical forest succession. <i>Forest Ecology and Management</i> , 2009 , 257, 2150-2156	3.9	71
139	Legume abundance along successional and rainfall gradients in Neotropical forests. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1104-1111	12.3	71
138	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. <i>Nature Ecology and Evolution</i> , 2019 , 3, 928-934	12.3	70
137	EFFECTS OF CLIMATE AND STAND AGE ON ANNUAL TREE DYNAMICS IN TROPICAL SECOND-GROWTH RAIN FORESTS. <i>Ecology</i> , 2005 , 86, 1808-1815	4.6	70
136	Genetic consequences of tropical second-growth forest regeneration. <i>Science</i> , 2005 , 307, 891	33.3	69
135	LEAF DISPLAY, CANOPY STRUCTURE, AND LIGHT INTERCEPTION OF TWO UNDERSTORY PALM SPECIES. <i>American Journal of Botany</i> , 1985 , 72, 1493-1502	2.7	69
134	Land cover dynamics following a deforestation ban in northern Costa Rica. <i>Environmental Research Letters</i> , 2013 , 8, 034017	6.2	67
133	Photosynthetic Utilization of Sunflecks: A Temporally Patchy Resource on a Time Scale of Seconds to Minutes 1994 , 175-208		67
132	Species Richness, Spatial Variation, and Abundance of the Soil Seed Bank of a Secondary Tropical Rain Forest1. <i>Biotropica</i> , 1998 , 30, 214-222	2.3	66
131	Vulnerability and resilience of tropical forest species to land-use change. <i>Conservation Biology</i> , 2009 , 23, 1438-47	6	65
130	Small Tent-Roosting Bats Promote Dispersal of Large-Seeded Plants in a Neotropical Forest. <i>Biotropica</i> , 2009 , 41, 737-743	2.3	61
129	Degradation and Recovery in Changing Forest Landscapes: A Multiscale Conceptual Framework. <i>Annual Review of Environment and Resources</i> , 2017 , 42, 161-188	17.2	60
128	Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2017 , 24, 37-47	3	59
127	Monitoring the structure of forest restoration plantations with a drone-lidar system. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2019 , 79, 192-198	7.3	59
126	Inner-crown Microenvironments of Two Emergent Tree Species in a Lowland Wet Forest1. <i>Biotropica</i> , 2005 , 37, 238-244	2.3	58
125	Ecological Aspects of the Distribution of C 4 Grasses in Selected Habitats of Costa Rica. <i>Biotropica</i> , 1978 , 10, 265	2.3	57
124	Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests. <i>New Phytologist</i> , 2016 , 209, 965-77	9.8	57
123	Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica 2015 , 25, 506-16		55

122	Landscape Restoration, Natural Regeneration, and the Forests of the Future. <i>Annals of the Missouri Botanical Garden</i> , 2017 , 102, 251-257	1.8	55	
121	Long-Term Effects of Forest Regrowth and Selective Logging on the Seed Bank of Tropical Forests in NE Costa Rica1 <i>Biotropica</i> , 1998 , 30, 223-237	2.3	55	
120	A landscape approach for cost-effective large-scale forest restoration. <i>Journal of Applied Ecology</i> , 2018 , 55, 2767-2778	5.8	55	
119	Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. <i>Conservation Letters</i> , 2020 , 13, e12709	6.9	53	
118	Pan-tropical prediction of forest structure from the largest trees. <i>Global Ecology and Biogeography</i> , 2018 , 27, 1366-1383	6.1	52	
117	Contrasting community compensatory trends in alternative successional pathways in central Amazonia. <i>Oikos</i> , 2011 , 120, 143-151	4	51	
116	Fostering natural forest regeneration on former agricultural land through economic and policy interventions. <i>Environmental Research Letters</i> , 2020 , 15, 043002	6.2	50	
115	A bounded null model explains juvenile tree community structure along light availability gradients in a temperate rain forest. <i>Oikos</i> , 2006 , 112, 131-137	4	50	
114	Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. <i>Ecology</i> , 2015 , 96, 1189-201	4.6	49	
113	A trait-mediated, neighbourhood approach to quantify climate impacts on successional dynamics of tropical rainforests. <i>Functional Ecology</i> , 2016 , 30, 157-167	5.6	49	
112	Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery. <i>Remote Sensing</i> , 2015 , 7, 5660-5696	5	47	
111	Patterns of genotypic variation and phenotypic plasticity of light response in two tropical Piper (Piperaceae) species. <i>American Journal of Botany</i> , 1997 , 84, 1542-1552	2.7	45	
110	Radial changes in wood specific gravity of tropical trees: inter- and intraspecific variation during secondary succession. <i>Functional Ecology</i> , 2015 , 29, 111-120	5.6	44	
109	Remnant trees affect species composition but not structure of tropical second-growth forest. <i>PLoS ONE</i> , 2014 , 9, e83284	3.7	43	
108	Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function 2011 , 21, 1120-37		43	
107	Effects of vegetation cover on seedling and sapling dynamics in secondary tropical wet forests in Costa Rica. <i>Journal of Tropical Ecology</i> , 2006 , 22, 65-76	1.3	43	
106	Effects of Leaf and Ramet Removal on Growth and Reproduction of Geonoma Congesta, A Clonal Understorey Palm. <i>Journal of Ecology</i> , 1991 , 79, 1137	6	43	
105	The drivers of tree cover expansion: Global, temperate, and tropical zone analyses. <i>Land Use Policy</i> , 2016 , 58, 502-513	5.6	42	

104	Rapid assessment of understory light availability in a wet tropical forest. <i>Agricultural and Forest Meteorology</i> , 2004 , 123, 177-185	5.8	42
103	The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. <i>Forest Ecology and Management</i> , 2019 , 438, 34-43	3.9	42
102	Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. <i>Ambio</i> , 2020 , 49, 74-84	6.5	42
101	Sexes show contrasting patterns of leaf and crown carbon gain in a dioecious rainforest shrub. <i>American Journal of Botany</i> , 2003 , 90, 347-55	2.7	41
100	Maximizing biodiversity conservation and carbon stocking in restored tropical forests. <i>Conservation Letters</i> , 2018 , 11, e12454	6.9	40
99	Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. <i>Journal of Ecology</i> , 2015 , 103, 1276-1290	6	38
98	Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method. <i>Ecology Letters</i> , 2014 , 17, 1591-601	10	37
97	Light-dependent seedling survival and growth of four tree species in Costa Rican second-growth rain forests. <i>Journal of Tropical Ecology</i> , 2005 , 21, 383-395	1.3	37
96	Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica. <i>PLoS ONE</i> , 2015 , 10, e0126748	3.7	37
95	Multigenerational genetic analysis of tropical secondary regeneration in a canopy palm. <i>Ecology</i> , 2007 , 88, 3065-75	4.6	35
94	Exotic eucalypts: From demonized trees to allies of tropical forest restoration?. <i>Journal of Applied Ecology</i> , 2020 , 57, 55-66	5.8	35
93	Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8817-8822	11.5	34
92	Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests. <i>Ecosystems</i> , 2017 , 20, 340-353	3.9	34
91	Effects of canopy species dominance on understorey light availability in low-elevation secondary forest stands in Costa Rica. <i>Journal of Tropical Ecology</i> , 1996 , 12, 779-788	1.3	34
90	INTERACTIONS BETWEEN CROWN STRUCTURE AND LIGHT ENVIRONMENT IN FIVE RAIN FOREST PIPER SPECIES. <i>American Journal of Botany</i> , 1988 , 75, 1459	2.7	33
89	The potential of secondary forests. <i>Science</i> , 2015 , 348, 642-3	33.3	31
88	Incorporating natural regeneration in forest landscape restoration in tropical regions: synthesis and key research gaps. <i>Biotropica</i> , 2016 , 48, 915-924	2.3	31
87	Proximity is not a proxy for parentage in an animal-dispersed Neotropical canopy palm. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2009 , 276, 2037-44	4.4	31

(2016-1992)

86	Patterns of Growth and Reproduction of Geonoma congesta, a Clustered Understory Palm. <i>Biotropica</i> , 1992 , 24, 43	2.3	31
85	Leaf Display, Canopy Structure, and Light Interception of Two Understory Palm Species. <i>American Journal of Botany</i> , 1985 , 72, 1493	2.7	31
84	PLANT SIZE AND FORM IN THE UNDERSTORY PALM GENUS GEONOMA: ARE SPECIES VARIATIONS ON A THEME?. <i>American Journal of Botany</i> , 1991 , 78, 680-694	2.7	26
83	Adding forests to the waterlinergyflood nexus. <i>Nature Sustainability</i> , 2021 , 4, 85-92	22.1	26
82	Early ecological outcomes of natural regeneration and tree plantations for restoring agricultural landscapes 2018 , 28, 373-384		26
81	Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. <i>Ecology</i> , 2019 , 100, e02637	4.6	25
80	Look downthere is a gapthe need to include soil data in Atlantic Forest restoration. <i>Restoration Ecology</i> , 2019 , 27, 361-370	3.1	24
79	Throughfall heterogeneity in tropical forested landscapes as a focal mechanism for deep percolation. <i>Journal of Hydrology</i> , 2014 , 519, 2180-2188	6	24
78	INTERACTIONS BETWEEN CROWN STRUCTURE AND LIGHT ENVIRONMENT IN FIVE RAIN FOREST PIPER SPECIES. <i>American Journal of Botany</i> , 1988 , 75, 1459-1471	2.7	23
77	Multidimensional tropical forest recovery. <i>Science</i> , 2021 , 374, 1370-1376	33.3	23
76	Recovery of species composition over 46 years in a logged Australian tropical forest following different intensity silvicultural treatments. <i>Forest Ecology and Management</i> , 2018 , 409, 660-666	3.9	22
75	Making Tropical Succession and Landscape Reforestation Successful. <i>Journal of Sustainable Forestry</i> , 2013 , 32, 649-658	1.2	22
74	Forest and landscape restoration: Toward a shared vision and vocabulary. <i>American Journal of Botany</i> , 2016 , 103, 1869-1871	2.7	21
73	Co-Creating Conceptual and Working Frameworks for Implementing Forest and Landscape Restoration Based on Core Principles. <i>Forests</i> , 2020 , 11, 706	2.8	21
72	Key challenges for governing forest and landscape restoration across different contexts. <i>Land Use Policy</i> , 2021 , 104, 104854	5.6	21
71	Towards more effective integration of tropical forest restoration and conservation. <i>Biotropica</i> , 2019 , 51, 463-472	2.3	19
70	Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. <i>Global Ecology and Biogeography</i> , 2020 , 29, 1799-1816	6.1	19
69	Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor 2016 , 26, 1456-1474		19

68	The forest transformation: Planted tree cover and regional dynamics of tree gains and losses. <i>Global Environmental Change</i> , 2019 , 59, 101988	10.1	18
67	Life History Traits of Lianas During Tropical Forest Succession. <i>Biotropica</i> , 2012 , 44, 720-727	2.3	17
66	Opposing mechanisms affect taxonomic convergence between tree assemblages during tropical forest succession. <i>Ecology Letters</i> , 2017 , 20, 1448-1458	10	17
65	Seasonally Dry Tropical Forest Biodiversity and Conservation Value in Agricultural Landscapes of Mesoamerica 2011 , 195-219		15
64	Plant Size and Form in the Understory Palm Genus Geonoma: Are Species Variations on a Theme?. <i>American Journal of Botany</i> , 1991 , 78, 680	2.7	15
63	A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. <i>Journal of Applied Ecology</i> , 2019 , 56, 2675-2686	5.8	14
62	Resilience and Alternative Stable States of Tropical Forest Landscapes under Shifting Cultivation Regimes. <i>PLoS ONE</i> , 2015 , 10, e0137497	3.7	14
61	Achieving Quality Forest and Landscape Restoration in the Tropics. <i>Forests</i> , 2020 , 11, 820	2.8	14
60	Manila Declaration on Forest and Landscape Restoration: Making It Happen. Forests, 2020, 11, 685	2.8	12
59	Protecting intact forests requires holistic approaches. <i>Nature Ecology and Evolution</i> , 2018 , 2, 915	12.3	12
58	Forest and Landscape Restoration: A Review Emphasizing Principles, Concepts, and Practices. <i>Land</i> , 2021 , 10, 28	3.5	12
57	The political ecology playbook for ecosystem restoration: Principles for effective, equitable, and transformative landscapes. <i>Global Environmental Change</i> , 2021 , 70, 102320	10.1	12
56	Conceptualising the Global Forest Response to Liana Proliferation. <i>Frontiers in Forests and Global Change</i> , 2020 , 3,	3.7	11
55	Ecological outcomes of agroforests and restoration 15 years after planting. <i>Restoration Ecology</i> , 2020 , 28, 1135-1144	3.1	11
54	Detecting landscape-level changes in tree biomass and biodiversity: methodological constraints and challenges of plot-based approaches. <i>Canadian Journal of Forest Research</i> , 2013 , 43, 799-808	1.9	11
53	Aboveground biomass density models for NASAE Global Ecosystem Dynamics Investigation (GEDI) lidar mission. <i>Remote Sensing of Environment</i> , 2022 , 270, 112845	13.2	11
52	Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. <i>Remote Sensing of Environment</i> , 2021 , 264, 112582	13.2	11
51	Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. <i>Communications Biology</i> , 2020 , 3, 317	6.7	10

50	Ecological, behavioural and nutritional factors influencing use of palms as host plants by a Neotropical forest grasshopper. <i>Journal of Tropical Ecology</i> , 1993 , 9, 183-197	1.3	10
49	Detecting successional changes in tropical forest structure using GatorEye drone-borne lidar. <i>Biotropica</i> , 2020 , 52, 1155-1167	2.3	10
48	Patterns of genotypic variation and phenotypic plasticity of light response in two tropical Piper (Piperaceae) species. <i>American Journal of Botany</i> , 1997 , 84, 1542	2.7	10
47	solarcalc 7.0: An enhanced version of a program for the analysis of hemispherical canopy photographs. <i>Computers and Electronics in Agriculture</i> , 2013 , 97, 15-20	6.5	9
46	Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good-Turing theory. <i>Ecology</i> , 2017 , 98, 2914-2929	4.6	9
45	Historical Patterns of Natural Forest Management in Costa Rica: The Good, the Bad and the Ugly. <i>Forests</i> , 2014 , 5, 1777-1797	2.8	9
44	Juvenile tree growth in relation to light availability in second-growth tropical rain forests. <i>Journal of Tropical Ecology</i> , 2006 , 22, 223-226	1.3	9
43	Spatial heterogeneity in tropical forest structure: canopy palms as landscape mosaics. <i>Trends in Ecology and Evolution</i> , 1996 , 11, 8-9	10.9	9
42	FOREST STRUCTURE, CANOPY ARCHITECTURE, AND LIGHT TRANSMITTANCE IN TROPICAL WET FORESTS 2001 , 82, 2707		9
41	Phenotypic plasticity and local adaptation favor range expansion of a Neotropical palm. <i>Ecology and Evolution</i> , 2018 , 8, 7462-7475	2.8	9
40	Associations between socio-environmental factors and landscape-scale biodiversity recovery in naturally regenerating tropical and subtropical forests. <i>Conservation Letters</i> , 2021 , 14, e12768	6.9	8
39	It is not just about time: Agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. <i>Biotropica</i> , 2021 , 53, 496-508	2.3	8
38	Tree growth and death in a tropical gallery forest in Brazil: understanding the relationships among size, growth, and survivorship for understory and canopy dominant species. <i>Plant Ecology</i> , 2012 , 213, 1081-1092	1.7	7
37	Diversidad y estructura horizontal en los bosques tropicales del Corredor Biolgico de Osa, Costa Rica. <i>Revista Forestal Mesoamericana Kur</i> [2012 , 9, 19	1.5	7
36	Silvicultural treatment effects on commercial timber volume and functional composition of a selectively logged Australian tropical forest over 48 years. <i>Forest Ecology and Management</i> , 2020 , 457, 117690	3.9	7
35	Forests: when natural regeneration is unrealistic. <i>Nature</i> , 2019 , 570, 164	50.4	6
34	Variations of leaf eco-physiological traits in relation to environmental factors during forest succession. <i>Ecological Indicators</i> , 2020 , 117, 106511	5.8	6
33	Corrigendum to The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession <i>Ecology Letters</i> , 2014 , 17, 1478-1478	10	6

32	Tropical Forest Regeneration 2013 , 277-286		6
31	People, primates and predators in the Pontal: from endangered species conservation to forest and landscape restoration in Brazil's Atlantic Forest. <i>Royal Society Open Science</i> , 2020 , 7, 200939	3.3	6
30	Effects of fragmentation and landscape variation on tree diversity in post-logging regrowth forests of the Southern Philippines. <i>Biodiversity and Conservation</i> , 2016 , 25, 923-941	3.4	6
29	The intervention continuum in restoration ecology: rethinking the activepassive dichotomy. <i>Restoration Ecology</i> ,e13535	3.1	6
28	Successional variation in carbon content and wood specific gravity of four tropical tree species. <i>Bosque</i> , 2013 , 34, 9-10	0.8	5
27	The cost of restoring carbon stocks in Brazil's Atlantic Forest. <i>Land Degradation and Development</i> , 2021 , 32, 830-841	4.4	5
26	Above-ground biomass recovery following logging and thinning over 46 years in an Australian tropical forest. <i>Science of the Total Environment</i> , 2020 , 734, 139098	10.2	4
25	Chronosequence predictions are robust in a Neotropical secondary forest, but plots miss the mark. <i>Global Change Biology</i> , 2018 , 24, 933-943	11.4	4
24	Functional recovery of secondary tropical forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
23	Biomasa sobre el suelo y carbono orgfiico en el suelo en cuatro estadios de sucesifi de bosques en la Penfisula de Osa, Costa Rica. <i>Revista Forestal Mesoamericana Kur</i> [2012 , 9, 22	1.5	4
22	Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. <i>Current Biology</i> , 2021 , 31, R1326-R1341	6.3	4
21	Photosynthetic Utilization of Lightflecks by Tropical Forest Plants 1987 , 257-260		4
20	Using leading and lagging indicators for forest restoration. Journal of Applied Ecology, 2021, 58, 1806-1	8 4.2 8	4
19	Ecological restoration increases conservation of taxonomic and functional beta diversity of woody plants in a tropical fragmented landscape. <i>Forest Ecology and Management</i> , 2019 , 451, 117538	3.9	3
18	Restoring Tropical Forests: A Practical Guide. <i>Ecological Restoration</i> , 2015 , 33, 118-119		3
17	Thinking outside the plot: monitoring forest biodiversity for social-ecological research. <i>Ecology and Society</i> , 2020 , 25,	4.1	3
16	Litter dynamics recover faster than arthropod biodiversity during tropical forest succession. <i>Biotropica</i> , 2020 , 52, 22-33	2.3	3
15	Creating a culture of caretaking through restoring ecosystems and landscapes. <i>One Earth</i> , 2020 , 3, 653-	-68.6	3

LIST OF PUBLICATIONS

14	Estructura, composicifi y diversidad vegetal en bosques tropicales del Corredor Biolgico Osa, Costa Rica. <i>Revista Forestal Mesoamericana Kur</i> [2013 , 10, 1	1.5	2
13	* Effects of Human Activities on Successional Pathways129-140		2
12	Inconvenient realities and the path toward science-based forest restoration policies: A reply to Veldman et al. <i>American Journal of Botany</i> , 2017 , 104, 652-653	2.7	1
11	A tropical rain forest feast. <i>Trends in Ecology and Evolution</i> , 1998 , 13, 421-2	10.9	1
10	Soil Fungal Community Composition Correlates with Site-Specific Abiotic Factors, Tree Community Structure, and Forest Age in Regenerating Tropical Rainforests. <i>Biology</i> , 2021 , 10,	4.9	1
9	Long-term growth responses of three Flindersia species to different thinning intensities after selective logging of a tropical rainforest. <i>Forest Ecology and Management</i> , 2020 , 476, 118442	3.9	1
8	Drivers of soil microbial community assembly during recovery from selective logging and clear-cutting. <i>Journal of Applied Ecology</i> , 2021 , 58, 2231	5.8	1
7	Forest and landscape restoration monitoring frameworks: how principled are they?. <i>Restoration Ecology</i> ,13572	3.1	O
6	Seed-rain-successional feedbacks in wet tropical forests. <i>Ecology</i> , 2021 , 102, e03362	4.6	0
5	Restoring Forests, Livelihoods, and Resilience in Tropical Landscapes. <i>Biotropica</i> , 2011 , 43, 764-764	2.3	
4	Assessing Recovery Following Selective Logging of Lowland Tropical Forests Based on Hyperspectral Imagery 2008 , 193-212		
3	Ecological Restoration and Ecosystem Services 2017 , 522-536		
2	Response to "Withering the coloniality of the forest transition?". <i>Ambio</i> , 2021 , 50, 1765-1766	6.5	
1	A proposal to advance theory and promote collaboration in tropical biology by supporting replications. <i>Biotropica</i> , 2021 , 53, 6-10	2.3	