Kevin L Gaston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5912715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcription Factor Chromatin in Endothelial Cells. Methods in Molecular Biology, 2022, 2441, 257-275.	0.4	0
2	Targeting protein kinase CK2 in the treatment of cholangiocarcinoma. Exploration of Targeted Anti-tumor Therapy, 2021, 2, .	0.5	1
3	Sequence of CX-4945 and Cisplatin Administration Determines the Effectiveness of Drug Combination and Cellular Response in Cholangiocarcinoma Cells In Vitro. Anticancer Research, 2021, 41, 6155-6167.	0.5	1
4	A Runaway PRH/HHEX-Notch3–Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition. Cancer Research, 2020, 80, 757-770.	0.4	13
5	Blood platelets stimulate cancer extravasation through TGFÎ ² -mediated downregulation of PRH/HHEX. Oncogenesis, 2020, 9, 10.	2.1	27
6	Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver International, 2019, 39, 43-62.	1.9	54
7	AB033. P-01. Andrographolide (AP1) inhibits cholangiocarcinoma cell invasion in vitro model. Hepatobiliary Surgery and Nutrition, 2019, 8, AB033-AB033.	0.7	1
8	Phosphorylation of PRH/HHEX by Protein Kinase CK2 Regulates Cell Proliferation and Cell Migration in Diverse Cell Types. , 2018, , .		0
9	CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism. Cancers, 2018, 10, 283.	1.7	44
10	CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis, 2017, 6, e293-e293.	2.1	19
11	Proline-Rich Homeodomain protein (PRH/HHEX) is a suppressor of breast tumour growth. Oncogenesis, 2017, 6, e346-e346.	2.1	24
12	Protein kinase CK2 inhibition suppresses neointima formation via a proline-rich homeodomain-dependent mechanism. Vascular Pharmacology, 2017, 99, 34-44.	1.0	10
13	The Enigmatic Origin of Papillomavirus Protein Domains. Viruses, 2017, 9, 240.	1.5	6
14	Proline-rich homeodomain and protein kinase CK2 as mediators of vascular smooth muscle cell proliferation and pathophysiological neointima formation. Atherosclerosis, 2016, 244, e12.	0.4	0
15	Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell and Bioscience, 2016, 6, 12.	2.1	31
16	Novel mechanisms of resistance to vemurafenib in melanoma - V600E B-Raf reversion and switching VEGF-A splice isoform expression. American Journal of Cancer Research, 2015, 5, 433-41.	1.4	9
17	PRH/HHex inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene, 2014, 33, 5592-5600.	2.6	29
18	Protein kinase CK2 inactivates PRH/Hhex using multiple mechanisms to de-repress VEGF-signalling genes and promote cell survival. Nucleic Acids Research, 2012, 40, 9008-9020.	6.5	24

KEVIN L GASTON

#	Article	IF	CITATIONS
19	Dasatinib inhibits leukaemic cell survival by decreasing PRH/Hhex phosphorylation resulting in increased repression of VEGF signalling genes. Leukemia Research, 2012, 36, 1434-1437.	0.4	11
20	The Proline Rich Homeodomain Protein PRH/Hhex Forms Stable Oligomers That Are Highly Resistant to Denaturation. PLoS ONE, 2012, 7, e35984.	1.1	6
21	Protein flexibility directs DNA recognition by the papillomavirus E2 proteins. Nucleic Acids Research, 2011, 39, 2969-2980.	6.5	14
22	In situ Subcellular Fractionation of Adherent and Non-adherent Mammalian Cells. Journal of Visualized Experiments, 2010, , .	0.2	21
23	PRH/Hhex Controls Cell Survival through Coordinate Transcriptional Regulation of Vascular Endothelial Growth Factor Signaling. Molecular and Cellular Biology, 2010, 30, 2120-2134.	1.1	37
24	DNA compaction by the higher-order assembly of PRH/Hex homeodomain protein oligomers. Nucleic Acids Research, 2010, 38, 7513-7525.	6.5	5
25	CK2 phosphorylation of the PRH/Hex homeodomain functions as a reversible switch for DNA binding. Nucleic Acids Research, 2009, 37, 3288-3300.	6.5	34
26	The regulation of cell proliferation by the papillomavirus early proteins. Cellular and Molecular Life Sciences, 2009, 66, 1700-1717.	2.4	97
27	The Human Papillomavirus E7â^²E2 Interaction Mechanism in Vitro Reveals a Finely Tuned System for Modulating Available E7 and E2 Proteins. Biochemistry, 2009, 48, 11939-11949.	1.2	15
28	The PRH/Hex repressor protein causes nuclear retention of Groucho/TLE co-repressors. Biochemical Journal, 2009, 417, 121-132.	1.7	25
29	p53 represses human papillomavirus type 16 DNA replication via the viral E2 protein. Virology Journal, 2008, 5, 5.	1.4	36
30	DNA Wrapping and Distortion by an Oligomeric Homeodomain Protein. Journal of Molecular Biology, 2008, 383, 10-23.	2.0	26
31	Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics. Nucleic Acids Research, 2008, 36, 756-769.	6.5	32
32	The papillomavirus E2 DNA binding domain. Frontiers in Bioscience - Landmark, 2008, Volume, 6006.	3.0	14
33	Characterization of an Enhancer Region of the Galanin Gene That Directs Expression to the Dorsal Root Ganglion and Confers Responsiveness to Axotomy. Journal of Neuroscience, 2007, 27, 6573-6580.	1.7	25
34	A Cancer Cell-Specific Inducer of Apoptosis. Human Gene Therapy, 2007, 18, 547-561.	1.4	14
35	Development of a Topical Protein Therapeutic for Human Papillomavirus and Associated Cancers. BioDrugs, 2006, 20, 209-218.	2.2	6
36	The recognition of local DNA conformation by the human papillomavirus type 6 E2 protein. Nucleic Acids Research, 2006, 34, 3897-3908.	6.5	18

KEVIN L GASTON

#	Article	IF	CITATIONS
37	Oligomerisation of the Developmental Regulator Proline Rich Homeodomain (PRH/Hex) is Mediated by a Novel Proline-rich Dimerisation Domain. Journal of Molecular Biology, 2006, 358, 943-962.	2.0	24
38	Purification and characterisation of the PRH homeodomain: Removal of the N-terminal domain of PRH increases the PRH homeodomain–DNA interaction. International Journal of Biological Macromolecules, 2006, 39, 45-50.	3.6	8
39	Diffusible VP22–E2 Protein Kills Bystander Cells and Offers a Route for Cervical Cancer Gene Therapy. Human Gene Therapy, 2006, 17, 147-157.	1.4	16
40	E2 Proteins from High- and Low-Risk Human Papillomavirus Types Differ in Their Ability To Bind p53 and Induce Apoptotic Cell Death. Journal of Virology, 2006, 80, 4580-4590.	1.5	58
41	A quadrivalent vaccine for human papillomavirus. Drugs of Today, 2006, 42, 703.	0.7	1
42	Diffusible VP22-E2 Protein Kills Bystander Cells and Offers a Route for Cervical Cancer Gene Therapy. Human Gene Therapy, 2006, .	1.4	0
43	Measuring the Induction or Inhibition of Apoptosis by HPV Proteins. , 2005, 119, 419-432.		2
44	Herpes simplex virus VP22–human papillomavirus E2 fusion proteins produced in mammalian or bacterial cells enter mammalian cells and induce apoptotic cell death. Biotechnology and Applied Biochemistry, 2004, 40, 157.	1.4	27
45	Transcriptional repression in eukaryotes: repressors and repression mechanisms. Cellular and Molecular Life Sciences, 2003, 60, 721-741.	2.4	123
46	Purification of the proline-rich homeodomain protein. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 786, 3-6.	1.2	9
47	Comparison of the Structure and DNA-binding Properties of the E2 Proteins from an Oncogenic and a Non-oncogenic Human Papillomavirus. Journal of Molecular Biology, 2003, 334, 979-991.	2.0	38
48	Human papillomavirus type 16 E2- and L1-specific serological and T-cell responses in women with vulval intraepithelial neoplasia. Journal of General Virology, 2003, 84, 2089-2097.	1.3	22
49	The transcriptional repressor protein PRH interacts with the proteasome. Biochemical Journal, 2003, 374, 667-675.	1.7	16
50	The interleukin-10 - 1082 G/A polymorphism: allele frequency in different populations and functional significance. Cellular and Molecular Life Sciences, 2002, 59, 560-569.	2.4	92
51	Human T cell responses to HPV 16 E2 generated with monocyte-derived dendritic cells. International Journal of Cancer, 2001, 94, 807-812.	2.3	16
52	Oestrogen and progesterone increase the levels of apoptosis induced by the human papillomavirus type 16 E2 and E7 proteins. Journal of General Virology, 2001, 82, 201-213.	1.3	36
53	Myc and YY1 mediate activation of the Surf-1 promoter in response to serum growth factors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1492, 172-179.	2.4	12
54	The Human Papillomavirus (HPV) 16 E2 Protein Induces Apoptosis in the Absence of Other HPV Proteins and via a p53-dependent Pathway. Journal of Biological Chemistry, 2000, 275, 87-94.	1.6	129

KEVIN L GASTON

#	Article	IF	CITATIONS
55	Magnesium ions enhance the transfer of human papillomavirus E2 protein from non-specific to specific binding sites. Journal of Molecular Biology, 1999, 294, 885-896.	2.0	11
56	THE INDUCTION OF APOPTOTIC CELL DEATH BY THE HPV 16 E2 PROTEIN. Biochemical Society Transactions, 1999, 27, A97-A97.	1.6	0
57	Cellular transcription factors regulate human papillomavirus type 16 gene expression by binding to a subset of the DNA sequences recognized by the viral E2 protein. Journal of General Virology, 1999, 80, 2087-2096.	1.3	11
58	A functional YY1 binding site is necessary and sufficient to activate Surf-1 promoter activity in response to serum growth factors. Nucleic Acids Research, 1997, 25, 3705-3711.	6.5	22
59	DNA Binding and Bending by the Human Papillomavirus Type 16 E2 Protein. Journal of Biological Chemistry, 1997, 272, 8236-8242.	1.6	61
60	A method for the separation of GST fusion proteins from co-purifying GroEL. Trends in Genetics, 1996, 12, 209-210.	2.9	54
61	CpG methylation has differential effects on the binding of YY1 and ETS proteins to the bi-directional promoter of the Surf-1 and Surf-2 genes. Nucleic Acids Research, 1995, 23, 901-909.	6.5	92
62	CpG methylation and the binding of YY1 and ETS proteins to the Surf-1/Surf-2 bidirectional promoter. Gene, 1995, 157, 257-259.	1.0	28
63	The Surf-1 and Surf-2 Genes and Their Essential Bidirectional Promoter Elements Are Conserved Between Mouse and Human. DNA and Cell Biology, 1994, 13, 1117-1126.	0.9	38
64	YY1 is involved in the regulation of the bi-directional promoter of the Surf-1 and Surf-2 genes. FEBS Letters, 1994, 347, 289-294.	1.3	29
65	The isolation of transcription factors from λgt11 cDNA expression libraries: human steroid 5α-reductase 1 has sequence-specific DNA binding activity. Nucleic Acids Research, 1992, 20, 6297-6301.	6.5	9
66	A comparison of the DNA bending activities of the DNA binding proteins CRP and TFIID. Nucleic Acids Research, 1992, 20, 3391-3396.	6.5	27
67	Mutations that alter the ability of theEscherichia colicyclic AMP receptor protein to activate transcription. Nucleic Acids Research, 1990, 18, 7243-7250.	6.5	191
68	Stringent spacing requirements for transcription activation by CRP. Cell, 1990, 62, 733-743.	13.5	279
69	The nirB promoter of Escherichia coli: location of nucleotide sequences essential for regulation by oxygen, the FNR protein and nitrite. Molecular Microbiology, 1988, 2, 527-530.	1.2	47
70	Transcription from the Escherichia coli melR promoter is dependent on the cyclic AMP receptor protein. Gene, 1988, 68, 297-305.	1.0	43