List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5912618/publications.pdf Version: 2024-02-01

MARK R HAMPTON

#	Article	IF	CITATIONS
1	Glutathione utilization protects Streptococcus pneumoniae against lactoperoxidase-derived hypothiocyanous acid. Free Radical Biology and Medicine, 2022, 179, 24-33.	2.9	15
2	Resistance of Streptococcus pneumoniae to Hypothiocyanous Acid Generated by Host Peroxidases. Infection and Immunity, 2022, 90, IAI0053021.	2.2	13
3	Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, 38.	5.2	42
4	Hypothiocyanous Acid Disrupts the Barrier Function of Brain Endothelial Cells. Antioxidants, 2022, 11, 608.	5.1	3
5	Oxidation of bacillithiol during killing of <i>Staphylococcus aureus</i> USA300 inside neutrophil phagosomes. Journal of Leukocyte Biology, 2022, 112, 591-605.	3.3	7
6	Hairpin-bisulfite sequencing of cells exposed to decitabine documents the process of DNA demethylation. Epigenetics, 2021, 16, 1251-1259.	2.7	2
7	Macrophage migration inhibitory factor inhibits neutrophil apoptosis by inducing cytokine release from mononuclear cells. Journal of Leukocyte Biology, 2021, 110, 893-905.	3.3	15
8	<i>Mycobacterium smegmatis</i> Resists the Bactericidal Activity of Hypochlorous Acid Produced in Neutrophil Phagosomes. Journal of Immunology, 2021, 206, 1901-1912.	0.8	8
9	Genome-wide impact of hydrogen peroxide on maintenance DNA methylation in replicating cells. Epigenetics and Chromatin, 2021, 14, 17.	3.9	15
10	Macrophage migration inhibitory factor (MIF) enhances hypochlorous acid production in phagocytic neutrophils. Redox Biology, 2021, 41, 101946.	9.0	9
11	Regulation of the epigenetic landscape by immune cell oxidants. Free Radical Biology and Medicine, 2021, 170, 131-149.	2.9	8
12	Peroxiredoxin 2 oxidation reveals hydrogen peroxide generation within erythrocytes during high-dose vitamin C administration. Redox Biology, 2021, 43, 101980.	9.0	10
13	Ascorbate Inhibits Proliferation and Promotes Myeloid Differentiation in TP53-Mutant Leukemia. Frontiers in Oncology, 2021, 11, 709543.	2.8	11
14	Induction of the reactive chlorine-responsive transcription factor RclR in <i>Escherichia coli</i> following ingestion by neutrophils. Pathogens and Disease, 2021, 79, .	2.0	13
15	Neutrophil NET Formation with Microbial Stimuli Requires Late Stage NADPH Oxidase Activity. Antioxidants, 2021, 10, 1791.	5.1	4
16	Antimicrobial Activity of Neutrophils Against Mycobacteria. Frontiers in Immunology, 2021, 12, 782495.	4.8	15
17	Evaluating the bactericidal action of hypochlorous acid in culture media. Free Radical Biology and Medicine, 2020, 159, 119-124.	2.9	23
18	Redox signalling and regulation of the blood-brain barrier. International Journal of Biochemistry and Cell Biology, 2020, 125, 105794.	2.8	16

#	Article	IF	CITATIONS
19	Structure-function analyses of alkylhydroperoxidase D from Streptococcus pneumoniae reveal an unusual three-cysteine active site architecture. Journal of Biological Chemistry, 2020, 295, 2984-2999.	3.4	4
20	Quantifying mitochondrial respiration in human lymphocytes and monocytes challenged with hydrogen peroxide. Free Radical Research, 2020, 54, 271-279.	3.3	1
21	Inhibition of DNA methylation in proliferating human lymphoma cells by immune cell oxidants. Journal of Biological Chemistry, 2020, 295, 7839-7848.	3.4	11
22	Analysis of Neutrophil Bactericidal Activity. Methods in Molecular Biology, 2020, 2087, 149-164.	0.9	11
23	Prolonged exposure to hypoxia induces an autophagy-like cell survival program in human neutrophils. Journal of Leukocyte Biology, 2019, 106, 1367-1379.	3.3	8
24	Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. Journal of Biological Chemistry, 2019, 294, 13502-13514.	3.4	37
25	Formulation of Broccoli Sprout Powder in Gastro-Resistant Capsules Protects against the Acidic pH of the Stomach In Vitro but Does Not Increase Isothiocyanate Bioavailability In Vivo. Antioxidants, 2019, 8, 359.	5.1	3
26	Peroxiredoxin expression and redox status in neutrophils and HL-60 cells. Free Radical Biology and Medicine, 2019, 135, 227-234.	2.9	8
27	Quaternary structure influences the peroxidase activity of peroxiredoxin 3. Biochemical and Biophysical Research Communications, 2018, 497, 558-563.	2.1	22
28	Post-translational regulation of macrophage migration inhibitory factor: Basis for functional fine-tuning. Redox Biology, 2018, 15, 135-142.	9.0	32
29	Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxidants and Redox Signaling, 2018, 28, 591-608.	5.4	53
30	Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: Investigation of a putative redox relay. Free Radical Biology and Medicine, 2018, 129, 383-393.	2.9	20
31	Peroxiredoxins in Colorectal Cancer: Predictive Biomarkers of Radiation Response and Therapeutic Targets to Increase Radiation Sensitivity?. Antioxidants, 2018, 7, 136.	5.1	5
32	Frailty in surgical patients. International Journal of Colorectal Disease, 2018, 33, 1657-1666.	2.2	78
33	Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H2O2 exposure. Journal of Biological Chemistry, 2017, 292, 14371-14380.	3.4	36
34	Structures of Human Peroxiredoxin 3 Suggest Self-Chaperoning Assembly that Maintains Catalytic State. Structure, 2016, 24, 1120-1129.	3.3	39
35	Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation. Biochemical Journal, 2016, 473, 411-421.	3.7	33
36	Reactive Oxygen Species and Neutrophil Function. Annual Review of Biochemistry, 2016, 85, 765-792.	11.1	592

#	Article	IF	CITATIONS
37	Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane. Free Radical Research, 2016, 50, 1329-1339.	3.3	24
38	Introduction to Special Issue on Mitochondrial Redox Signaling in Health and Disease. Free Radical Biology and Medicine, 2016, 100, 1-4.	2.9	9
39	The marine cytotoxin portimine is a potent and selective inducer of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 1447-1452.	4.9	19
40	Peroxiredoxins and the Regulation of Cell Death. Molecules and Cells, 2016, 39, 72-76.	2.6	48
41	Accumulation of oxidized peroxiredoxin 2 in red blood cells and its prevention. Transfusion, 2015, 55, 1909-1918.	1.6	29
42	Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis. Free Radical Biology and Medicine, 2015, 86, 133-144.	2.9	30
43	Telomere Length Measurement on the Roche LightCycler 480 Platform. Genetic Testing and Molecular Biomarkers, 2015, 19, 63-68.	0.7	9
44	Cryo-Electron Microscopy Structure of Human Peroxiredoxin-3 Filament Reveals the Assembly of a Putative Chaperone. Structure, 2015, 23, 912-920.	3.3	30
45	Myeloperoxidase-dependent Lipid Peroxidation Promotes the Oxidative Modification of Cytosolic Proteins in Phagocytic Neutrophils. Journal of Biological Chemistry, 2015, 290, 9896-9905.	3.4	30
46	Valproic acid exposure leads to upregulation and increased promoter histone acetylation of sepiapterin reductase in a serotonergic cell line. Neuropharmacology, 2015, 99, 79-88.	4.1	21
47	Multiple binding modes of isothiocyanates that inhibit macrophage migration inhibitory factor. European Journal of Medicinal Chemistry, 2015, 93, 501-510.	5.5	23
48	Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function. Free Radical Biology and Medicine, 2015, 89, 498-511.	2.9	19
49	Embryonic oxidative stress results in reproductive impairment for adult zebrafish. Redox Biology, 2015, 6, 648-655.	9.0	19
50	Signaling via a peroxiredoxin sensor. Nature Chemical Biology, 2015, 11, 5-6.	8.0	80
51	Potent inhibition of macrophage migration inhibitory factor (MIF) by myeloperoxidase-dependent oxidation of epicatechins. Biochemical Journal, 2014, 462, 303-314.	3.7	23
52	Peroxiredoxins as biomarkers of oxidative stress. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 906-912.	2.4	144
53	Analysis of Neutrophil Bactericidal Activity. Methods in Molecular Biology, 2014, 1124, 291-306.	0.9	12
54	Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry. Free Radical Biology and Medicine, 2013, 58, 109-117.	2.9	55

#	Article	IF	CITATIONS
55	Hyperoxidation of Peroxiredoxins 2 and 3. Journal of Biological Chemistry, 2013, 288, 14170-14177.	3.4	140
56	Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46. Biochemical Journal, 2013, 453, 475-485.	3.7	45
57	Neutrophilâ€mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation. FASEB Journal, 2013, 27, 3315-3322.	0.5	41
58	Macrophage migration inhibitory factor gene polymorphisms in inflammatory bowel disease: An association study in New Zealand Caucasians and meta-analysis. World Journal of Gastroenterology, 2013, 19, 6656.	3.3	17
59	Research on shaky ground. Redox Report, 2012, 17, 233-233.	4.5	Ο
60	Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology, 2012, 92, 841-849.	3.3	387
61	Macrophage migration inhibitory factor covalently complexed with phenethyl isothiocyanate. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 999-1002.	0.7	11
62	Effect of activated human polymorphonuclear leucocytes on <scp>T</scp> lymphocyte proliferation and viability. Immunology, 2012, 137, 249-258.	4.4	39
63	Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid. Archives of Biochemistry and Biophysics, 2012, 527, 45-54.	3.0	14
64	Using Food to Reduce <i>H. pylori</i> â€associated Inflammation. Phytotherapy Research, 2012, 26, 1620-1625.	5.8	24
65	7 Feast or Famine: In the fast lane to puberty. , 2011, , 59-68.		0
66	Biological targets of isothiocyanates. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 888-894.	2.4	113
67	Model for the Exceptional Reactivity of Peroxiredoxins 2 and 3 with Hydrogen Peroxide. Journal of Biological Chemistry, 2011, 286, 18048-18055.	3.4	97
68	Assessment of Redox Changes to Hydrogen Peroxide-Sensitive Proteins During EGF Signaling. Antioxidants and Redox Signaling, 2011, 15, 167-174.	5.4	23
69	Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin. FEBS Letters, 2010, 584, 1257-1262.	2.8	30
70	Individual and combined effects of foods on <i>helicobacter pylori</i> growth. Phytotherapy Research, 2010, 24, 1229-1233.	5.8	21
71	Maternal Undernutrition Significantly Impacts Ovarian Follicle Number and Increases Ovarian Oxidative Stress in Adult Rat Offspring. PLoS ONE, 2010, 5, e15558.	2.5	124
72	Uptake of <i>Helicobacter pylori</i> Outer Membrane Vesicles by Gastric Epithelial Cells. Infection and Immunity, 2010, 78, 5054-5061.	2.2	164

#	Article	IF	CITATIONS
73	Measuring the Redox State of Cellular Peroxiredoxins by Immunoblotting. Methods in Enzymology, 2010, 474, 51-66.	1.0	71
74	Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochemical Journal, 2010, 432, 313-321.	3.7	52
75	Measuring Mitochondrial Protein Thiol Redox State. Methods in Enzymology, 2010, 474, 123-147.	1.0	28
76	Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochemical Journal, 2010, 425, 313-325.	3.7	429
77	Direct Modification of the Proinflammatory Cytokine Macrophage Migration Inhibitory Factor by Dietary Isothiocyanates. Journal of Biological Chemistry, 2009, 284, 32425-32433.	3.4	70
78	Reversible oxidation of mitochondrial peroxiredoxin 3 in mouse heart subjected to ischemia and reperfusion. FEBS Letters, 2009, 583, 997-1000.	2.8	44
79	Proteomic Detection of Oxidized and Reduced Thiol Proteins in Cultured Cells. Methods in Molecular Biology, 2009, 519, 363-375.	0.9	16
80	Redox Potential and Peroxide Reactivity of Human Peroxiredoxin 3. Biochemistry, 2009, 48, 6495-6501.	2.5	112
81	Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins. Biochemical Journal, 2009, 421, 51-58.	3.7	98
82	Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Radical Biology and Medicine, 2008, 44, 1001-1009.	2.9	82
83	Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates. Free Radical Biology and Medicine, 2008, 45, 494-502.	2.9	59
84	Thiol chemistry and specificity in redox signaling. Free Radical Biology and Medicine, 2008, 45, 549-561.	2.9	1,039
85	The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation. Biochemical Pharmacology, 2008, 76, 1097-1109.	4.4	141
86	Induction of apoptosis by phenethyl isothiocyanate in cells overexpressing Bcl-XL. Cancer Letters, 2008, 271, 215-221.	7.2	14
87	Inhibition of receptor-mediated apoptosis upon Bcl-2 overexpression is not associated with increased antioxidant status. Biochemical and Biophysical Research Communications, 2008, 375, 145-150.	2.1	3
88	Peroxiredoxin 2 and Peroxide Metabolism in the Erythrocyte. Antioxidants and Redox Signaling, 2008, 10, 1621-1630.	5.4	167
89	Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori. Carcinogenesis, 2008, 29, 2400-2405.	2.8	80
90	Direct cardiac actions of erythropoietin (EPO): effects on cardiac contractility, BNP secretion and ischaemia/reperfusion injury. Clinical Science, 2008, 114, 293-304.	4.3	28

#	Article	IF	CITATIONS
91	Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide. Carcinogenesis, 2007, 28, 2166-2171.	2.8	27
92	A Functional NADPH Oxidase Prevents Caspase Involvement in the Clearance of Phagocytic Neutrophils. Infection and Immunity, 2007, 75, 3256-3263.	2.2	32
93	Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood, 2007, 109, 2611-2617.	1.4	252
94	Reactions of Superoxide with Myeloperoxidase. Biochemistry, 2007, 46, 4888-4897.	2.5	90
95	The High Reactivity of Peroxiredoxin 2 with H2O2 Is Not Reflected in Its Reaction with Other Oxidants and Thiol Reagents. Journal of Biological Chemistry, 2007, 282, 11885-11892.	3.4	338
96	Analysis of Neutrophil Bactericidal Activity. Methods in Molecular Biology, 2007, 412, 319-332.	0.9	27
97	Modeling the Reactions of Superoxide and Myeloperoxidase in the Neutrophil Phagosome. Journal of Biological Chemistry, 2006, 281, 39860-39869.	3.4	544
98	Use of a Proteomic Technique to Identify Oxidant-Sensitive Thiol Proteins in Cultured Cells. , 2006, , 253-265.		4
99	Phenethyl Isothiocyanate Triggers Apoptosis in Jurkat Cells Made Resistant by the Overexpression of Bcl-2. Cancer Research, 2006, 66, 6772-6777.	0.9	26
100	Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Biochemical Journal, 2005, 389, 785-795.	3.7	141
101	OxLDL induced cell death is inhibited by the macrophage synthesised pterin, 7,8-dihydroneopterin, in U937 cells but not THP-1 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 361-369.	4.1	32
102	NADPH oxidase involvement in the pathology of infection. Free Radical Biology and Medicine, 2005, 38, 1188-1196.	2.9	32
103	Detection of apoptosis by caspase-3 activation in tracheal aspirate neutrophils from premature infants: relationship with NF-I®B activation. Journal of Leukocyte Biology, 2005, 77, 432-437.	3.3	10
104	Oxidized LDL triggers phosphatidylserine exposure in human monocyte cell lines by both caspase-dependent and -independent mechanisms. FEBS Letters, 2004, 578, 169-174.	2.8	19
105	The role of oxidants and vitamin C on neutrophil apoptosis and clearance. Biochemical Society Transactions, 2004, 32, 499-501.	3.4	14
106	Helicobacter pylori Outer Membrane Vesicles Modulate Proliferation and Interleukin-8 Production by Gastric Epithelial Cells. Infection and Immunity, 2003, 71, 5670-5675.	2.2	148
107	The chemopreventive agent phenethyl isothiocyanate sensitizes cells to Fas-mediated apoptosis. Carcinogenesis, 2003, 25, 765-772.	2.8	56
108	Diphenyleneiodonium Triggers the Efflux of Glutathione from Cultured Cells. Journal of Biological Chemistry, 2002, 277, 19402-19407.	3.4	48

#	Article	IF	CITATIONS
109	Redox Regulation of Neutrophil Function. Antioxidants and Redox Signaling, 2002, 4, 1-3.	5.4	7
110	Chlorination of Bacterial and Neutrophil Proteins during Phagocytosis and Killing of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 9757-9762.	3.4	172
111	Interaction with substrate sensitises caspaseâ€3 to inactivation by hydrogen peroxide. FEBS Letters, 2002, 517, 229-232.	2.8	64
112	Inactivation of cellular caspases by peptide-derived tryptophan and tyrosine peroxides. FEBS Letters, 2002, 527, 289-292.	2.8	51
113	Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics, 2002, 2, 1261-1266.	2.2	123
114	Oxidant-mediated phosphatidylserine exposure and macrophage uptake of activated neutrophils: possible impairment in chronic granulomatous disease. Journal of Leukocyte Biology, 2002, 71, 775-81.	3.3	56
115	Regulation of Apoptosis by Vitamin C. Journal of Biological Chemistry, 2001, 276, 46835-46840.	3.4	62
116	Reactions of Myeloperoxidase and Production of Hypochlorous Acid in Neutrophil Phagosomes. , 2000, , 58-67.		2
117	Mitochondria: unravelling the secrets of life and death. Redox Report, 1999, 4, 137-139.	4.5	0
118	Caspase Involvement in the Induction of Apoptosis by the Environmental Toxicants Tributyltin and Triphenyltin. Toxicology and Applied Pharmacology, 1999, 156, 141-146.	2.8	88
119	Methods for quantifying phagocytosis and bacterial killing by human neutrophils. Journal of Immunological Methods, 1999, 232, 15-22.	1.4	74
120	Hypochlorous acid causes caspase activation and apoptosis or growth arrest in human endothelial cells. Biochemical Journal, 1999, 344, 443-449.	3.7	88
121	Hypochlorous acid causes caspase activation and apoptosis or growth arrest in human endothelial cells. Biochemical Journal, 1999, 344, 443.	3.7	39
122	Redox regulation of apoptotic cell death. BioFactors, 1998, 8, 1-5.	5.4	107
123	Redox Regulation of the Caspases during Apoptosis ^a . Annals of the New York Academy of Sciences, 1998, 854, 328-335.	3.8	253
124	Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Letters, 1998, 429, 351-355.	2.8	240
125	Activation of NF-κB in human neutrophils during phagocytosis of bacteria independently of oxidant generation. FEBS Letters, 1998, 432, 40-44.	2.8	19
126	Corrigendum to: Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis (FEBS 20394). FEBS Letters, 1998, 437, 163-163.	2.8	3

#	ARTICLE	IF	CITATIONS
127	Redox regulation of apoptotic cell death in the immune system. Toxicology Letters, 1998, 102-103, 355-358.	0.8	61
128	Involvement of Caspases in Neutrophil Apoptosis: Regulation by Reactive Oxygen Species. Blood, 1998, 92, 4808-4818.	1.4	319
129	Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood, 1998, 92, 3007-3017.	1.4	1,321
130	Involvement of Caspases in Neutrophil Apoptosis: Regulation by Reactive Oxygen Species. Blood, 1998, 92, 4808-4818.	1.4	19
131	Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood, 1998, 92, 3007-3017.	1.4	404
132	Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Letters, 1997, 414, 552-556.	2.8	582
133	Mitochondria as the focus of apoptosis research. Cell Death and Differentiation, 1997, 4, 427-428.	11.2	30
134	Involvement of extracellular calcium in phosphatidylserine exposure during apoptosis. FEBS Letters, 1996, 399, 277-282.	2.8	107
135	Modification of neutrophil oxidant production with diphenyleneiodonium and its effect on bacterial killing. Free Radical Biology and Medicine, 1995, 18, 633-639.	2.9	62
136	Bacterial Killing by Neutrophils in Hypertonic Environments. Journal of Infectious Diseases, 1994, 169, 839-846.	4.0	58
137	A single assay for measuring the rates of phagocytosis and bacterial killing by neutrophils. Journal of Leukocyte Biology, 1994, 55, 147-152.	3.3	83