Anne Kellerman

List of Publications by Citations

Source: https://exaly.com/author-pdf/5912205/anne-kellerman-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29 1,224 14 34 g-index

36 1,780 6.6 4.72 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
29	Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. <i>Nature Communications</i> , 2014 , 5, 3804	17.4	312
28	Persistence of dissolved organic matter in lakes related to its molecular characteristics. <i>Nature Geoscience</i> , 2015 , 8, 454-457	18.3	288
27	Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. <i>ISME Journal</i> , 2016 , 10, 533-45	11.9	197
26	Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. <i>Environmental Science & Ecosystems</i> . <i>Environmental Science</i> & <i>Ecosystems</i> . <i>Environmental Science</i> & <i>Ecosystems</i> .	10.3	105
25	Absence of a priming effect on dissolved organic carbon degradation in lake water. <i>Limnology and Oceanography</i> , 2015 , 60, 159-168	4.8	65
24	Molecular-Level Composition and Acute Toxicity of Photosolubilized Petrogenic Carbon. <i>Environmental Science & Environmental &</i>	10.3	29
23	Realizing the potential of trait-based aquatic ecology: New tools and collaborative approaches. <i>Limnology and Oceanography</i> , 2017 , 62, 253-271	4.8	26
22	Identifying the Molecular Signatures of Agricultural Expansion in Amazonian Headwater Streams. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1637-1650	3.7	25
21	Flux and Seasonality of Dissolved Organic Matter From the Northern Dvina (Severnaya Dvina) River, Russia. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1041-1056	3.7	25
20	Selective Leaching of Dissolved Organic Matter From Alpine Permafrost Soils on the Qinghai-Tibetan Plateau. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1005-1016	3.7	16
19	Glacier Outflow Dissolved Organic Matter as a Window Into Seasonally Changing Carbon Sources: Leverett Glacier, Greenland. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2020 , 125, e2019JG0051	ı <i>6</i> 17	15
18	Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghaillibet Plateau: importance of source and permafrost degradation. <i>Biogeosciences</i> , 2018 , 15, 6637-6648	4.6	15
17	Drivers of Dissolved Organic Matter in the Vent and Major Conduits of the World Largest Freshwater Spring. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 2775-2790	3.7	14
16	Fundamental drivers of dissolved organic matter composition across an Arctic effective precipitation gradient. <i>Limnology and Oceanography</i> , 2020 , 65, 1217-1234	4.8	14
15	Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes. <i>Limnology and Oceanography</i> , 2020 , 65, 1764-1780	4.8	13
14	Delineating the Continuum of Dissolved Organic Matter in Temperate River Networks. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2019GB006495	5.9	12
13	Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. <i>Journal of Hazardous Materials</i> . 2021 , 402, 123998	12.8	10

LIST OF PUBLICATIONS

12	Organic Matter Degradation across Ecosystem Boundaries: The Need for a Unified Conceptualization. <i>Trends in Ecology and Evolution</i> , 2021 , 36, 113-122	10.9	8
11	Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. <i>Nature Geoscience</i> , 2021 , 14, 496-502	18.3	6
10	Pan-Arctic Riverine Dissolved Organic Matter: Synchronous Molecular Stability, Shifting Sources and Subsidies. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006871	5.9	5
9	The evolution of stream dissolved organic matter composition following glacier retreat in coastal watersheds of southeast Alaska. <i>Biogeochemistry</i> ,1	3.8	5
8	The Influence of Glacial Cover on Riverine Silicon and Iron Exports in Chilean Patagonia. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2020GB006611	5.9	4
7	Molecular Signatures of Glacial Dissolved Organic Matter From Svalbard and Greenland. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006709	5.9	4
6	Limited Presence of Permafrost Dissolved Organic Matter in the Kolyma River, Siberia Revealed by Ramped Oxidation. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG005977	3.7	3
5	Controls on Riverine Dissolved Organic Matter Composition Across an Arctic-Boreal Latitudinal Gradient. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG005988	3.7	3
4	Assessing the Role of Photochemistry in Driving the Composition of Dissolved Organic Matter in Glacier Runoff. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2021JG006516	3.7	1
3	Anthropogenic landcover impacts fluvial dissolved organic matter composition in the Upper Mississippi River Basin. <i>Biogeochemistry</i> ,1	3.8	1
2	The Effects of Glacial Cover on Riverine Silicon Isotope Compositions in Chilean Patagonia. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	1
1	Molecular Insights into Glacial Cryoconite Dissolved Organic Matter Evolution under Dark Conditions during the Ablation Season on the Tibetan Plateau. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 870-879	3.2	1