
Maria R Coleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5911565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aryl sulfonic acid catalysts: Effect of pendant group structure on activity in hydrolysis of polyethylene terephthalate. Journal of Applied Polymer Science, 2022, 139, .	2.6	4
2	Improved polymerization and depolymerization kinetics of poly(ethylene terephthalate) by co-polymerization with 2,5-furandicarboxylic acid. RSC Advances, 2021, 11, 23506-23518.	3.6	12
3	Poly (4-styrenesulfonic acid): A recoverable and reusable catalyst for acid hydrolysis of polyethylene terephthalate. Polymer, 2021, 222, 123620.	3.8	18
4	Mitigation of the Color Generated During Mechanical Recycling of PET/MXD6 blends. Polymer Degradation and Stability, 2021, 194, 109748.	5.8	1
5	Effect of Biaxial Orientation on Microstructure and Properties of Renewable Copolyesters of Poly(ethylene terephthalate) with 2,5-Furandicarboxylic Acid for Packaging Application. ACS Applied Polymer Materials, 2019, 1, 1798-1810.	4.4	28
6	Effect of Dimethyl Terephthalate and Dimethyl Isophthalate on the Free Volume and Barrier Properties of Poly(ethylene terephthalate) (PET): Amorphous PET. Macromolecules, 2018, 51, 456-467.	4.8	31
7	Combined effect of small molecule antiplasticizers and strain induced crystallization on properties of polyethylene terephthalate. Polymer Crystallization, 2018, 1, e10016.	0.8	3
8	Role of enhanced solubility in esterification of 2,5-furandicarboxylic acid with ethylene glycol at reduced temperatures: energy efficient synthesis of poly(ethylene 2,5-furandicarboxylate). Reaction Chemistry and Engineering, 2018, 3, 447-453.	3.7	23
9	Highâ€Throughput Continuous Production of Shearâ€Exfoliated 2D Layered Materials using Compressible Flows. Advanced Materials, 2018, 30, e1800200.	21.0	51
10	Modification of poly(ethylene terephthalate) (<scp>PET</scp>) using linoleic acid for oxygen barrier improvement: Impact of processing methods. Journal of Applied Polymer Science, 2017, 134, 45023.	2.6	17
11	Effect of Chain Dynamics, Crystallinity, and Free Volume on the Barrier Properties of Poly(ethylene) Tj ETQq1 1 0	.784314 r 4.8	gBT/Overlo <mark>c</mark> i
12	A Novel Approach to Improve the Barrier Properties of PET/Clay Nanocomposites. International Journal of Polymer Science, 2017, 2017, 1-10.	2.7	35
13	Surface modification of ZrW ₂ O ₈ and ZrW ₂ O ₇ (OH)·2H ₂ O by in situ polymerization: Enhanced filler particles for use in composites. Polymer Composites, 2016, 37, 1359-1368.	4.6	3
14	Gas transport properties in (6FDAâ€RTIL)â€(6FDAâ€MDA) block copolyimides. Journal of Applied Polymer Science, 2016, 133, .	2.6	11
15	Impact of processing method and surface functionality on carbon nanofiber dispersion in polyimide matrix and resulting mechanical properties. Polymer Composites, 2014, 35, 1473-1485.	4.6	8
16	Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications. European Polymer Journal, 2013, 49, 482-491.	5.4	44
17	Formation of high loading flexible carbon nanofiber network composites. Composites Science and Technology, 2013, 75, 1-6.	7.8	17
18	Preparation and properties of polyimide nanocomposites with negative thermal expansion nanoparticle filler. Materials Chemistry and Physics, 2012, 137, 448-457.	4.0	22

MARIA R COLEMAN

#	Article	IF	CITATIONS
19	Development and Characterization of Ionic Liquid-Functionalized Nanocomposite Membranes. ACS Symposium Series, 2011, , 61-79.	0.5	1
20	Surface Functionalization of Polybenzimidazole Membranes To Increase Hydrophilicity and Charge. ACS Symposium Series, 2011, , 303-321.	0.5	7
21	Zirconium tungstate/polymer nanocomposites: Challenges and opportunities. Physica Status Solidi (B): Basic Research, 2011, 248, 123-129.	1.5	59
22	Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity. Journal of Membrane Science, 2010, 363, 195-203.	8.2	55
23	Gas transport properties of polyimide–POSS nanocomposites. Journal of Membrane Science, 2010, 358, 26-32.	8.2	75
24	Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer, 2010, 51, 2494-2502.	3.8	57
25	Synthesis of copolyimides based on room temperature ionic liquid diamines. Journal of Polymer Science Part A, 2010, 48, 4036-4046.	2.3	58
26	Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry. Applied Surface Science, 2009, 255, 4806-4813.	6.1	32
27	A hybrid functional nanomaterial: POSS functionalized carbon nanofiber. Nanotechnology, 2009, 20, 325603.	2.6	28
28	Thermal and mechanical properties of blended polyimide and amineâ€functionalized poly(orthosiloxane) composites. Journal of Applied Polymer Science, 2008, 108, 2691-2699.	2.6	28
29	Equilibrium swelling behavior of thermally responsive metal affinity hydrogels, Part II: Solution effects. Polymer, 2008, 49, 3744-3750.	3.8	4
30	Equilibrium swelling behavior of thermally responsive metal affinity hydrogels, Part I: Compositional effects. Polymer, 2008, 49, 3737-3743.	3.8	12
31	Functionalization of carbon nanofibers with diamine and polyimide oligmer. Carbon, 2008, 46, 1115-1125.	10.3	32
32	Impact of Mobile Phase Parameters on Transport Properties of Metal Affinity Hydrogel Membranes. Separation Science and Technology, 2008, 43, 4075-4098.	2.5	5
33	Effect of H+and N+Irradiation on Structure and Permeability of the Polyimide Matrimid®. Separation Science and Technology, 2008, 43, 4030-4055.	2.5	3
34	Development of Smart Membrane Filters for Microbial Sensing. Separation Science and Technology, 2008, 43, 4056-4074.	2.5	15
35	Influence of Carbon Nanofiber Content and Surface Treatment on Mechanical Properties of Vinyl Ester. Polymers and Polymer Composites, 2008, 16, 405-414.	1.9	11
36	Controlling Phase Transition Behavior of Thermally Responsive Metal Affinity Hydrogels:  A Molecular Design Approach. Macromolecules, 2007, 40, 5850-5857.	4.8	8

MARIA R COLEMAN

#	Article	IF	CITATIONS
37	Impact of H+ ion beam irradiation on Matrimid®. II. Evolution in gas transport properties. Journal of Applied Polymer Science, 2007, 103, 1670-1680.	2.6	11
38	Development of environmentally responsive hydrogels with metal affinity behavior. Journal of Applied Polymer Science, 2007, 105, 1210-1220.	2.6	4
39	Engineering for Teachers of Migrant Students (ETMS). Environmental Engineering Science, 2006, 23, 472-478.	1.6	1
40	Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides. Journal of Applied Polymer Science, 2004, 91, 1174-1182.	2.6	25
41	Impact of H+ion irradiation on Matrimid®. I. Evolution in chemical structure. Journal of Applied Polymer Science, 2003, 90, 2010-2019.	2.6	3
42	Impact of ion beam irradiation on microstructure and gas permeance of polysulfone asymmetric membranes. Journal of Membrane Science, 2003, 214, 143-156.	8.2	21
43	lon Beam Modification of Matrimid® Gas Separation Membrane—Evolution in Chemical Structure, Microstructure and Gas Permeation Properties. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	0
44	Modification of commercial water treatment membranes by ion beam irradiation. Desalination, 2002, 146, 259-264.	8.2	30
45	Immobilized Metal Affinity Membrane Separation: Characteristics of Two Materials of Differing Preparation Chemistries. Separation Science and Technology, 1999, 34, 2793-2802.	2.5	15
46	Properties of Cysteine-Added Soy Protein-Wheat Gluten Films. Journal of Food Science, 1999, 64, 514-518.	3.1	72
47	Conditioning of Fluorine-Containing Polyimides. 2. Effect of Conditioning Protocol at 8 Volume Dilation on Gas-Transport Properties. Macromolecules, 1999, 32, 3106-3113.	4.8	77
48	lon implant-induced change in polyimide films monitored by variable energy positron annihilation spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2413-2421.	2.1	14
49	Conditioning of Fluorine Containing Polyimides. 1. Effect of Exposure to High Pressure Carbon Dioxide on Permeability. Macromolecules, 1997, 30, 6899-6905.	4.8	42
50	Mechanical and Barrier Properties of Rice Bran Films. Journal of Food Science, 1997, 62, 395-398.	3.1	57
51	Atomic force microscopy images of ion-implanted 6FDA-pMDA polyimide films. Journal of Applied Polymer Science, 1997, 66, 459-469.	2.6	27
52	The transport properties of polyimide isomers containing hexafluoroisopropylidene in the diamine residue. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1915-1926.	2.1	108
53	Gas-separation applications of miscible blends of isomeric polyimides. Journal of Applied Polymer Science, 1993, 50, 1059-1064.	2.6	27
54	Controlled Permeability Polymer Membranes. Annual Review of Materials Research, 1992, 22, 47-89.	5.5	149

#	Article	IF	CITATIONS
55	Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications. Journal of Membrane Science, 1990, 50, 285-297.	8.2	321