Nikhil C Munshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5910527/publications.pdf

Version: 2024-02-01

466 papers 43,166 citations

91 h-index 2375 198 g-index

477 all docs

477 docs citations

477 times ranked

41452 citing authors

#	Article	IF	CITATIONS
1	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	13.7	8,060
2	Antitumor Activity of Thalidomide in Refractory Multiple Myeloma. New England Journal of Medicine, 1999, 341, 1565-1571.	13.9	2,433
3	International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncology, The, 2016, 17, e328-e346.	5.1	1,866
4	Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. New England Journal of Medicine, 2019, 380, 1726-1737.	13.9	1,130
5	Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. New England Journal of Medicine, 2021, 384, 705-716.	13.9	1,129
6	Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. New England Journal of Medicine, 2017, 376, 1311-1320.	13.9	924
7	NF-κB as a Therapeutic Target in Multiple Myeloma. Journal of Biological Chemistry, 2002, 277, 16639-16647.	1.6	824
8	Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood, 2010, 116, 679-686.	0.6	790
9	Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014, 5, 2997.	5.8	741
10	Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet, The, 2021, 398, 314-324.	6.3	711
11	Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14374-14379.	3.3	691
12	Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood, 2002, 99, 4525-4530.	0.6	640
13	Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 540-545.	3.3	533
14	Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood, 2001, 98, 492-494.	0.6	524
15	Activation of NF-κB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene, 2002, 21, 5673-5683.	2.6	456
16	Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood, 2008, 112, 1329-1337.	0.6	439
17	Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma. JAMA Oncology, 2017, 3, 28.	3.4	405
18	Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood, 2009, 114, 371-379.	0.6	364

#	Article	IF	Citations
19	The Differentiation and Stress Response Factor XBP-1 Drives Multiple Myeloma Pathogenesis. Cancer Cell, 2007, 11, 349-360.	7.7	362
20	Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood, 2014, 123, 3128-3138.	0.6	361
21	Blockade of XBP1 splicing by inhibition of IRE1 $\hat{l}\pm$ is a promising therapeutic option in multiple myeloma. Blood, 2012, 119, 5772-5781.	0.6	353
22	Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood, 2013, 121, 2975-2987.	0.6	335
23	Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 2018, 132, 587-597.	0.6	335
24	Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. ELife, $2014,3,.$	2.8	318
25	A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia, 2019, 33, 159-170.	3.3	313
26	Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood, 2018, 132, 2456-2464.	0.6	301
27	Elevated IL-17 produced by Th17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood, 2010, 115, 5385-5392.	0.6	300
28	Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood, 2000, 95, 4008-4010.	0.6	290
29	Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood, 2011, 117, 4696-4700.	0.6	285
30	Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 4607-4618.	3.2	271
31	Results of autologous stem cell transplant in multiple myeloma patients with renal failure. British Journal of Haematology, 2001, 114, 822-829.	1.2	267
32	Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood, 2004, 103, 1787-1790.	0.6	266
33	Prognostic Significance of Copy-Number Alterations in Multiple Myeloma. Journal of Clinical Oncology, 2009, 27, 4585-4590.	0.8	258
34	Prospective Evaluation of Magnetic Resonance Imaging and [¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography at Diagnosis and Before Maintenance Therapy in Symptomatic Patients With Multiple Myeloma Included in the IFM/DFCI 2009 Trial: Results of the IMAJEM Study. Journal of Clinical Oncology, 2017, 35, 2911-2918.	0.8	247
35	APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood, 2016, 127, 3225-3236.	0.6	244
36	Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell, 2009, 16, 309-323.	7.7	242

#	Article	IF	Citations
37	Single-Agent Bortezomib in Previously Untreated Multiple Myeloma: Efficacy, Characterization of Peripheral Neuropathy, and Molecular Correlations With Response and Neuropathy. Journal of Clinical Oncology, 2009, 27, 3518-3525.	0.8	241
38	International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease. Blood, 2018, 132, 2115-2124.	0.6	232
39	Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood, 2015, 125, 3049-3058.	0.6	228
40	Dysfunctional T regulatory cells in multiple myeloma. Blood, 2006, 107, 301-304.	0.6	220
41	Synthetic miR-34a Mimics as a Novel Therapeutic Agent for Multiple Myeloma: <i>In Vitro</i> and <i>In Vivo</i> Evidence. Clinical Cancer Research, 2012, 18, 6260-6270.	3.2	213
42	Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood, 2003, 102, 4504-4511.	0.6	212
43	Role of B-Cell–Activating Factor in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment. Cancer Research, 2006, 66, 6675-6682.	0.4	212
44	Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood, 2010, 116, 3227-3237.	0.6	202
45	The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells <i>In vitro</i> location vivolocation Research, 2009, 15, 4028-4037.	3.2	200
46	Autologous stem cell transplantation in elderly multiple myeloma patients over the age of 70 years. British Journal of Haematology, 2001, 114, 600-607.	1.2	199
47	Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood, 2011, 117, 393-402.	0.6	199
48	A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Advances, 2020, 4, 5988-5999.	2.5	198
49	Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood, 2008, 111, 1654-1664.	0.6	193
50	Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clinical Cancer Research, 2017, 23, 4290-4300.	3.2	192
51	Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications, 2019, 10, 3835.	5.8	183
52	Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32, 1948-1957.	3.3	179
53	Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood, 2004, 104, 4188-4193.	0.6	177
54	Biallelic loss of BCMA as a resistance mechanism to CART cell therapy in a patient with multiple myeloma. Nature Communications, 2021, 12, 868.	5.8	173

#	Article	IF	CITATIONS
55	Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. New England Journal of Medicine, 2022, 387, 132-147.	13.9	173
56	Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood, 2005, 106, 1042-1047.	0.6	172
57	Identification of genes regulated by Dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene, 2002, 21, 1346-1358.	2.6	170
58	Immunomodulatory Drug Lenalidomide (CC-5013, IMiD3) Augments Anti-CD40 SGN-40–Induced Cytotoxicity in Human Multiple Myeloma: Clinical Implications. Cancer Research, 2005, 65, 11712-11720.	0.4	163
59	Genomic patterns of progression in smoldering multiple myeloma. Nature Communications, 2018, 9, 3363.	5.8	163
60	Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood, 2012, 120, 1877-1887.	0.6	162
61	Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood, 2011, 118, 675-678.	0.6	160
62	Ciltacabtagene Autoleucel, an Anti–B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. Journal of Clinical Oncology, 2023, 41, 1265-1274.	0.8	160
63	In Vitro and in Vivo Activity of the Maytansinoid Immunoconjugate huN901-N2′-Deacetyl-N2′-(3-Mercapto-1-Oxopropyl)-Maytansine against CD56+ Multiple Myeloma Cells. Cancer Research, 2004, 64, 4629-4636.	0.4	157
64	Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood, 2006, 108, 2804-2810.	0.6	156
65	Long-term outcome results of the first tandem autotransplant trial for multiple myeloma. British Journal of Haematology, 2006, 135, 158-164.	1.2	155
66	Multicenter, Phase I, Dose-Escalation Trial of Lenalidomide Plus Bortezomib for Relapsed and Relapsed/Refractory Multiple Myeloma. Journal of Clinical Oncology, 2009, 27, 5713-5719.	0.8	155
67	A Phase I Trial of the Anti-KIR Antibody IPH2101 and Lenalidomide in Patients with Relapsed/Refractory Multiple Myeloma. Clinical Cancer Research, 2015, 21, 4055-4061.	3.2	154
68	A practical guide for mutational signature analysis in hematological malignancies. Nature Communications, 2019, 10, 2969.	5.8	145
69	Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood, 2016, 128, 1590-1603.	0.6	139
70	Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood, 2014, 124, 1404-1411.	0.6	138
71	Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia, 2018, 32, 2604-2616.	3.3	137
72	Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncology, The, 2021, 22, e105-e118.	5.1	136

#	Article	IF	Citations
73	Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood, 2012, 120, 3519-3529.	0.6	133
74	A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica, 2010, 95, 845-848.	1.7	129
75	Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood, 2004, 103, 1799-1806.	0.6	127
76	Cytotoxic activity of the maytansinoid immunoconjugate B-B4–DM1 against CD138+ multiple myeloma cells. Blood, 2004, 104, 3688-3696.	0.6	122
77	Neutralizing B-Cell–Activating Factor Antibody Improves Survival and Inhibits Osteoclastogenesis in a Severe Combined Immunodeficient Human Multiple Myeloma Model. Clinical Cancer Research, 2007, 13, 5903-5909.	3.2	122
78	Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood, 2009, 113, 2290-2297.	0.6	119
79	New Strategies in the Treatment of Multiple Myeloma. Clinical Cancer Research, 2013, 19, 3337-3344.	3.2	118
80	A phase 2 study of modified lenalidomide, bortezomib and dexamethasone in transplantâ€ineligible multiple myeloma. British Journal of Haematology, 2018, 182, 222-230.	1.2	118
81	Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nature Communications, 2018, 9, 1716.	5.8	117
82	Use of a claims database to characterize and estimate the incidence rate for Castleman disease. Leukemia and Lymphoma, 2015, 56, 1252-1260.	0.6	116
83	ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell, 2017, 32, 88-100.e6.	7.7	114
84	Telomerase Inhibition and Cell Growth Arrest After Telomestatin Treatment in Multiple Myeloma. Clinical Cancer Research, 2004, 10, 770-776.	3.2	110
85	Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology, 2020, 38, 2380-2389.	0.8	110
86	Genetics of multiple myeloma: another heterogeneity level?. Blood, 2015, 125, 1870-1876.	0.6	107
87	Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. British Journal of Haematology, 2007, 138, 783-791.	1.2	102
88	Timing the initiation of multiple myeloma. Nature Communications, 2020, 11, 1917.	5.8	99
89	Autologous Transplantation for Multiple Myeloma in the Era of New Drugs: A Phase III Study of the Intergroupe Francophone Du Myelome (IFM/DFCI 2009 Trial). Blood, 2015, 126, 391-391.	0.6	99
90	Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nature Communications, 2020, 11, 2996.	5.8	98

#	Article	IF	CITATIONS
91	Anti-myeloma activity of pamidronate in vivo. British Journal of Haematology, 1998, 103, 530-532.	1.2	96
92	A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clinical Cancer Research, 2016, 22, 1222-1233.	3.2	96
93	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	1.9	94
94	Multiple myeloma clonal evolution in homogeneously treated patients. Leukemia, 2018, 32, 2636-2647.	3.3	94
95	International evidence-based consensus diagnostic and treatment guidelines for unicentric Castleman disease. Blood Advances, 2020, 4, 6039-6050.	2.5	94
96	Combination Therapy with Interleukin-6 Receptor Superantagonist Sant7 and Dexamethasone Induces Antitumor Effects in a Novel SCID-hu In vivo Model of Human Multiple Myeloma. Clinical Cancer Research, 2005, 11, 4251-4258.	3.2	93
97	Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results Journal of Clinical Oncology, 2020, 38, 8503-8503.	0.8	93
98	The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Reports, 2017, 19, 218-224.	2.9	92
99	Treatment of multiple myeloma-related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncology, The, 2021, 22, e119-e130.	5.1	92
100	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	0.6	89
101	The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nature Communications, 2016, 7, 10258.	5.8	87
102	Optimizing dendritic cell-based immunotherapy in multiple myeloma. British Journal of Haematology, 2002, 117, 297-305.	1.2	86
103	Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease. Journal of Bone and Mineral Research, 2016, 31, 1225-1234.	3.1	85
104	Genomics of Multiple Myeloma. Journal of Clinical Oncology, 2017, 35, 963-967.	0.8	85
105	Genomics in Multiple Myeloma. Clinical Cancer Research, 2011, 17, 1234-1242.	3.2	84
106	Multiple myeloma: A prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. Journal of Cellular Biochemistry, 2007, 101, 950-968.	1.2	83
107	Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience. Blood, 2015, 125, 2095-2100.	0.6	82
108	Revealing the Impact of Structural Variants in Multiple Myeloma. Blood Cancer Discovery, 2020, 1, 258-273.	2.6	81

#	Article	IF	CITATIONS
109	The Cyclophilin A–CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nature Medicine, 2015, 21, 572-580.	15.2	79
110	Targeting the miR-221–222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma. Cancer Research, 2015, 75, 4384-4397.	0.4	76
111	Analysis of Inflammatory and Anemia-Related Biomarkers in a Randomized, Double-Blind, Placebo-Controlled Study of Siltuximab (Anti-IL6 Monoclonal Antibody) in Patients With Multicentric Castleman Disease. Clinical Cancer Research, 2015, 21, 4294-4304.	3.2	75
112	Prevalence and Outcome of COVID-19 Infection in Cancer Patients: A National Veterans Affairs Study. Journal of the National Cancer Institute, 2021, 113, 691-698.	3.0	75
113	Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. British Journal of Haematology, 2001, 112, 167-174.	1.2	74
114	Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Advances, 2018, 2, 2937-2946.	2.5	72
115	Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells. Clinical Cancer Research, 2017, 23, 4280-4289.	3.2	71
116	The Role of Minimal Residual Disease Testing in Myeloma Treatment Selection and Drug Development: Current Value and Future Applications. Clinical Cancer Research, 2017, 23, 3980-3993.	3.2	71
117	Biologic sequelae of $\hat{\Pi}^{0}$ B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood, 2009, 113, 5228-5236.	0.6	70
118	Early Versus Late Autologous Stem Cell Transplant in Newly Diagnosed Multiple Myeloma: Long-Term Follow-up Analysis of the IFM 2009 Trial. Blood, 2020, 136, 39-39.	0.6	70
119	Durable Clinical Responses in Heavily Pretreated Patients with Relapsed/Refractory Multiple Myeloma: Updated Results from a Multicenter Study of bb2121 Anti-Bcma CAR T Cell Therapy. Blood, 2017, 130, 740-740.	0.6	67
120	Myeloma-Specific Multiple Peptides Able to Generate Cytotoxic T Lymphocytes: A Potential Therapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders. Clinical Cancer Research, 2012, 18, 4850-4860.	3.2	66
121	Development of extramedullary myeloma in the era of novel agents: no evidence of increased risk with lenalidomide–bortezomib combinations. British Journal of Haematology, 2015, 169, 843-850.	1.2	66
122	Indatuximab Ravtansine (BT062) Monotherapy in Patients With Relapsed and/or Refractory Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 372-380.	0.2	66
123	Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation. Blood Cancer Discovery, 2021, 2, 468-483.	2.6	64
124	Growth arrest, apoptosis, and telomere shortening of Barrett's-associated adenocarcinoma cells by a telomerase inhibitor. Gastroenterology, 2004, 126, 1337-1346.	0.6	63
125	Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. British Journal of Haematology, 2015, 169, 851-858.	1.2	63
126	CARTITUDE-1: Phase 1b/2 Study of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy, in Relapsed/Refractory Multiple Myeloma. Blood, 2020, 136, 22-25.	0.6	63

#	Article	IF	Citations
127	Updated Results from the Phase I CRB-402 Study of Anti-Bcma CAR-T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma: Correlation of Expansion and Duration of Response with T Cell Phenotypes. Blood, 2020, 136, 25-26.	0.6	63
128	APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia, 2019, 33, 426-438.	3.3	59
129	Generation of Antitumor Invariant Natural Killer T Cell Lines in Multiple Myeloma and Promotion of Their Functions via Lenalidomide: A Strategy for Immunotherapy. Clinical Cancer Research, 2008, 14, 6955-6962.	3.2	58
130	A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood, 2016, 128, 249-252.	0.6	58
131	Association of COVID-19 Vaccination With SARS-CoV-2 Infection in Patients With Cancer. JAMA Oncology, 2022, 8, 281.	3.4	57
132	Differential and limited expression of mutant alleles in multiple myeloma. Blood, 2014, 124, 3110-3117.	0.6	54
133	Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages. Oncolmmunology, 2016, 5, e1189052.	2.1	54
134	Gene Expression Profiles in Myeloma: Ready for the Real World?. Clinical Cancer Research, 2016, 22, 5434-5442.	3.2	53
135	Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92. Blood, 2018, 132, 1050-1063.	0.6	52
136	Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia, 2021, 35, 752-763.	3.3	52
137	A Global Expression-based Analysis of the Consequences of the $t(4;14)$ Translocation in Myeloma. Clinical Cancer Research, 2004, 10, 5692-5701.	3.2	51
138	Pyk2 promotes tumor progression in multiple myeloma. Blood, 2014, 124, 2675-2686.	0.6	51
139	Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia, 2018, 32, 2626-2635.	3.3	48
140	A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget, 2016, 7, 77326-77341.	0.8	45
141	Determining therapeutic susceptibility in multiple myeloma by single-cell mass accumulation. Nature Communications, 2017, 8, 1613.	5. 8	45
142	Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. Journal of Clinical Oncology, 2020, 38, 3107-3118.	0.8	45
143	A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia, 2020, 34, 2150-2162.	3.3	45
144	Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy. Blood Advances, 2021, 5, 2982-2986.	2.5	45

#	Article	IF	Citations
145	Updated Clinical and Correlative Results from the Phase I CRB-402 Study of the BCMA-Targeted CAR T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma. Blood, 2021, 138, 548-548.	0.6	45
146	Minimal Residual Disease in Multiple Myeloma. Journal of Clinical Oncology, 2013, 31, 2523-2526.	0.8	44
147	Consensus guidelines and recommendations for infection prevention in multiple myeloma: a report from the International Myeloma Working Group. Lancet Haematology,the, 2022, 9, e143-e161.	2.2	44
148	Prognostic value of minimal residual disease negativity in myeloma: combined analysis of POLLUX, CASTOR, ALCYONE, and MAIA. Blood, 2022, 139, 835-844.	0.6	43
149	CCR6, the Sole Receptor for the Chemokine CCL20, Promotes Spontaneous Intestinal Tumorigenesis. PLoS ONE, 2014, 9, e97566.	1.1	43
150	Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia, 2018, 32, 1838-1841.	3.3	42
151	Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. American Journal of Hematology, 2019, 94, 1244-1253.	2.0	42
152	Phase II Trial of the Combination of Ixazomib, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2018, 132, 804-804.	0.6	42
153	Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood, 2019, 134, 160-170.	0.6	41
154	Moving From Cancer Burden to Cancer Genomics for Smoldering Myeloma. JAMA Oncology, 2020, 6, 425.	3.4	41
155	A novel immunogenic <scp>CS</scp> 1â€specific peptide inducing antigenâ€specific cytotoxic <scp>T</scp> lymphocytes targeting multiple myeloma. British Journal of Haematology, 2012, 157, 687-701.	1.2	40
156	Telomere Maintenance in Laser Capture Microdissection–Purified Barrett's Adenocarcinoma Cells and Effect of Telomerase Inhibition ⟨i⟩ln vivo⟨/i⟩. Clinical Cancer Research, 2008, 14, 4971-4980.	3.2	39
157	Cancer Cell Dissemination and Homing to the Bone Marrow in a Zebrafish Model. Cancer Research, 2016, 76, 463-471.	0.4	39
158	The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Advances, 2020, 4, 4195-4207.	2.5	39
159	A Genome-Wide Association Study Identifies a Novel Locus for Bortezomib-Induced Peripheral Neuropathy in European Patients with Multiple Myeloma. Clinical Cancer Research, 2016, 22, 4350-4355.	3.2	38
160	Review of siltuximab in the treatment of multicentric Castleman's disease. Therapeutic Advances in Hematology, 2016, 7, 360-366.	1.1	38
161	Deciphering the chronology of copy number alterations in Multiple Myeloma. Blood Cancer Journal, 2019, 9, 39.	2.8	38
162	Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer Journal, 2018, 8, 92.	2.8	37

#	Article	IF	Citations
163	Risk factors in multiple myeloma: is it time for a revision?. Blood, 2021, 137, 16-19.	0.6	37
164	Mutational Profile and Prognostic Relevance of Circulating Tumor Cells in Multiple Myeloma. Blood, 2015, 126, 23-23.	0.6	37
165	p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood, 2017, 129, 1308-1319.	0.6	36
166	Multiple Myeloma DREAM Challenge reveals epigenetic regulator PHF19 as marker of aggressive disease. Leukemia, 2020, 34, 1866-1874.	3.3	36
167	Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma. Cancer Research, 2020, 80, 2031-2044.	0.4	36
168	A Green Tea Polyphenol, Epigallocatechin-3-Gallate, Induces Selective Apoptosis in Multiple Myeloma Cells: Mechanism of Action and Therapeutic Potential Blood, 2005, 106, 1590-1590.	0.6	36
169	Updated Results from CARTITUDE-1: Phase 1b/2Study of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy, in Patients With Relapsed/Refractory Multiple Myeloma. Blood, 2021, 138, 549-549.	0.6	36
170	BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications. Leukemia, 2020, 34, 210-223.	3.3	35
171	Biomarkers of Bone Remodeling in Multiple Myeloma Patients to Tailor Bisphosphonate Therapy. Clinical Cancer Research, 2014, 20, 3955-3961.	3.2	33
172	Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood, 2017, 129, 2233-2245.	0.6	33
173	Diagnosis of Castleman Disease. Hematology/Oncology Clinics of North America, 2018, 32, 53-64.	0.9	33
174	Deep Response in Multiple Myeloma: A Critical Review. BioMed Research International, 2015, 2015, 1-7.	0.9	32
175	Safety Data from a First-in-Human Phase 1 Trial of NKG2D Chimeric Antigen Receptor-T Cells in AML/MDS and Multiple Myeloma. Blood, 2016, 128, 4052-4052.	0.6	32
176	Genomic heterogeneity in multiple myeloma. Current Opinion in Genetics and Development, 2015, 30, 56-65.	1.5	31
177	DNA repair of myeloma plasma cells correlates with clinical outcome: the effect of the nonhomologous end-joining inhibitor SCR7. Blood, 2016, 128, 1214-1225.	0.6	29
178	Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma. Nature Communications, 2022, 13, 807.	5.8	29
179	VIS832, a novel CD138-targeting monoclonal antibody, potently induces killing of human multiple myeloma and further synergizes with IMiDs or bortezomib in vitro and in vivo. Blood Cancer Journal, 2020, 10, 110.	2.8	28
180	Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia, 2022, 36, 138-154.	3.3	28

#	Article	IF	CITATIONS
181	Case 13-2008. New England Journal of Medicine, 2008, 358, 1838-1848.	13.9	27
182	Selective targeting of multiple myeloma by B cell maturation antigen (BCMA)-specific central memory CD8+ cytotoxic T lymphocytes: immunotherapeutic application in vaccination and adoptive immunotherapy. Leukemia, 2019, 33, 2208-2226.	3.3	27
183	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma., 2020, 8, e000734.		27
184	Dysregulated APOBEC3G causes DNA damage and promotes genomic instability in multiple myeloma. Blood Cancer Journal, $2021,11,166.$	2.8	27
185	Mechanism of action of immunomodulatory agents in multiple myeloma. Medical Oncology, 2010, 27, 7-13.	1.2	26
186	Novel epitope evoking CD138 antigenâ€specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders. British Journal of Haematology, 2011, 155, 349-361.	1.2	26
187	Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clinical Cancer Research, 2021, 27, 5195-5212.	3.2	26
188	Phase I Trial of CCI-779 (Temsirolimus) and Weekly Bortezomib in Relapsed and/or Refractory Multiple Myeloma. Blood, 2008, 112, 3696-3696.	0.6	26
189	Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) as a Novel Therapeutic Target in Multiple Myeloma. Clinical Cancer Research, 2017, 23, 5225-5237.	3.2	25
190	Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. Blood Advances, 2019, 3, 3360-3374.	2.5	25
191	Alternative Splicing Is a Frequent Event and Impacts Clinical Outcome in Myeloma: A Large RNA-Seq Data Analysis of Newly-Diagnosed Myeloma Patients. Blood, 2014, 124, 638-638.	0.6	25
192	Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldenström Macroglobulinemia. Clinical Cancer Research, 2019, 25, 369-377.	3.2	24
193	The Non-Coding RNA Landscape of Plasma Cell Dyscrasias. Cancers, 2020, 12, 320.	1.7	24
194	Cisplatin-Mediated Upregulation of APE2 Binding to MYH9 Provokes Mitochondrial Fragmentation and Acute Kidney Injury. Cancer Research, 2021, 81, 713-723.	0.4	24
195	Early Evidence of Anabolic Bone Activity of BHQ880, a Fully Human Anti-DKK1 Neutralizing Antibody: Results of a Phase 2 Study in Previously Untreated Patients with Smoldering Multiple Myeloma At Risk for Progression. Blood, 2012, 120, 331-331.	0.6	24
196	Non-overlapping Control of Transcriptome by Promoter- and Super-Enhancer-Associated Dependencies in Multiple Myeloma. Cell Reports, 2018, 25, 3693-3705.e6.	2.9	23
197	Heteroclitic XBP1 peptides evoke tumor-specific memory cytotoxic T lymphocytes against breast cancer, colon cancer, and pancreatic cancer cells. Oncolmmunology, 2014, 3, e970914.	2.1	21
198	Combination of a Selective $HSP90\hat{l}\pm/\hat{l}^2$ Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0143847.	1.1	20

#	Article	IF	Citations
199	Management of Posterior Reversible Encephalopathy Syndrome Induced by Carfilzomib in a Patient With Multiple Myeloma. Journal of Clinical Oncology, 2016, 34, e1-e5.	0.8	20
200	Logic programming reveals alteration of key transcription factors in multiple myeloma. Scientific Reports, 2017, 7, 9257.	1.6	20
201	Monitoring the cytogenetic architecture of minimal residual plasma cells indicates therapy-induced clonal selection in multiple myeloma. Leukemia, 2020, 34, 578-588.	3.3	20
202	Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clinical Cancer Research, 2016, 22, 6099-6109.	3.2	19
203	BMT CTN Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling: Summary and Recommendations from the Organizing Committee. Biology of Blood and Marrow Transplantation, 2018, 24, 641-648.	2.0	19
204	Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 370-387.	2.6	19
205	AMG 701 Potently Induces Anti-Multiple Myeloma (MM) Functions of T Cells and IMiDs Further Enhance Its Efficacy to Prevent MM Relapse In Vivo. Blood, 2019, 134, 135-135.	0.6	19
206	A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1609-1618.	1.1	18
207	Variable BCL2/BCL2L1 ratio in multiple myeloma with t(11;14). Blood, 2018, 132, 2778-2780.	0.6	18
208	Phase II Trial of Combination of Elotuzumab, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2016, 128, 976-976.	0.6	17
209	The shaping and functional consequences of the dosage effect landscape in multiple myeloma. BMC Genomics, 2013, 14, 672.	1.2	16
210	Immunotherapy in Multiple Myeloma: Accelerating on the Path to the Patient. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 332-344.	0.2	16
211	Summary of the Third Annual Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling. Biology of Blood and Marrow Transplantation, 2020, 26, e7-e15.	2.0	16
212	Identification of human leucocyte antigen (<scp>HLA</scp>)â€A*0201â€restricted cytotoxic <scp>T</scp> lymphocyte epitopes derived from <scp>HLA</scp> â€ <scp>DO</scp> β as a novel target for multiple myeloma. British Journal of Haematology, 2013, 163, 343-351.	1.2	15
213	Contemporary Analysis of Electronic Frailty Measurement in Older Adults with Multiple Myeloma Treated in the National US Veterans Affairs Healthcare System. Cancers, 2021, 13, 3053.	1.7	15
214	Indatuximab ravtansine plus dexamethasone with lenalidomide or pomalidomide in relapsed or refractory multiple myeloma: a multicentre, phase 1/2a study. Lancet Haematology,the, 2021, 8, e794-e807.	2.2	15
215	Comprehensive genomic analysis of refractory multiple myeloma reveals a complex mutational landscape associated with drug resistance and novel therapeutic vulnerabilities. Haematologica, 2022, 107, 1891-1901.	1.7	15
216	Impact of Genes Highly Correlated with <i>MMSET</i> Myeloma on the Survival of Non- <i>MMSET</i> Myeloma Patients. Clinical Cancer Research, 2016, 22, 4039-4044.	3.2	14

#	Article	IF	CITATIONS
217	BCMA-Specific ADC MEDI2228 and Daratumumab Induce Synergistic Myeloma Cytotoxicity via IFN-Driven Immune Responses and Enhanced CD38 Expression. Clinical Cancer Research, 2021, 27, 5376-5388.	3.2	14
218	Secondary Quality-of-Life Domains in Patients with Relapsed and Refractory Multiple Myeloma Treated with the Bcma-Directed CAR T Cell Therapy Idecabtagene Vicleucel (ide-cel; bb2121): Results from the Karmma Clinical Trial. Blood, 2020, 136, 28-29.	0.6	13
219	Novel Myeloma-Specific Multiple Peptides Able to Generate Cytotoxic T Lymphocytes: Potential Therapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders,. Blood, 2011, 118, 3990-3990.	0.6	13
220	Cell-free DNA for the detection of emerging treatment failure in relapsed/ refractory multiple myeloma. Leukemia, 2022, 36, 1078-1087.	3.3	13
221	Identification of High-Risk Multiple Myeloma With a Plasma Cell Leukemia-Like Transcriptomic Profile. Journal of Clinical Oncology, 2022, 40, 3132-3150.	0.8	13
222	Immunotherapy for multiple myeloma. Expert Review of Hematology, 2014, 7, 91-96.	1.0	12
223	Immunotherapy Strategies in Multiple Myeloma. Hematology/Oncology Clinics of North America, 2014, 28, 927-943.	0.9	12
224	Nextâ€generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles. Cancer, 2017, 123, 3701-3708.	2.0	12
225	Covid‶9 vaccination in patients with multiple myeloma: Focus on immune response. American Journal of Hematology, 2021, 96, 896-900.	2.0	12
226	CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic IncRNA Network. Methods in Molecular Biology, 2021, 2348, 189-204.	0.4	12
227	Plasmacytoid Dendritic Cells Induce Growth and Survival of Multiple Myeloma Cells: Therapeutic Application Blood, 2007, 110, 3507-3507.	0.6	12
228	Quality of life, psychological distress, and prognostic perceptions in patients with multiple myeloma. Cancer, 2022, 128, 1996-2004.	2.0	12
229	Investigative Tools for Diagnosis and Management. Hematology American Society of Hematology Education Program, 2008, 2008, 298-305.	0.9	11
230	Amplification and overexpression of E2 ubiquitin conjugase UBE2T promotes homologous recombination in multiple myeloma. Blood Advances, 2019, 3, 3968-3972.	2.5	11
231	The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia, 2020, 34, 167-179.	3.3	11
232	ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Science Advances, 2021, 7, .	4.7	11
233	High-Dose Melphalan Significantly Increases Mutational Burden in Multiple Myeloma Cells at Relapse: Results from a Randomized Study in Multiple Myeloma. Blood, 2020, 136, 4-5.	0.6	11
234	Lack of Response to Vaccination in MGUS and Stable Myeloma Blood, 2009, 114, 1852-1852.	0.6	11

#	Article	IF	CITATIONS
235	Classify Hyperdiploidy Status of Multiple Myeloma Patients Using Gene Expression Profiles. PLoS ONE, 2013, 8, e58809.	1.1	11
236	Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett's Adenocarcinoma Cells. Journal of Gastroenterology and Hepatology Research, 2017, 6, 2286-2295.	0.2	11
237	Clonal phylogeny and evolution of critical cytogenetic aberrations in multiple myeloma at single-cell level by QM-FISH. Blood Advances, 2022, 6, 441-451.	2.5	11
238	IgM-MM is predominantly a pre–germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood, 2021, 138, 1980-1985.	0.6	11
239	Deficiency of IL-17A, but not the prototypical Th17 transcription factor $ROR\hat{I}^3$ t, decreases murine spontaneous intestinal tumorigenesis. Cancer Immunology, Immunotherapy, 2016, 65, 13-24.	2.0	10
240	Biallelic Loss of BCMA Triggers Resistance to Anti-BCMA CAR T Cell Therapy in Multiple Myeloma. Blood, 2020, 136, 14-14.	0.6	10
241	A Phase I, Multi-Center, Dose Escalation Study of Atiprimod in Patients with Refractory or Relapsed Multiple Myeloma (MM) Blood, 2005, 106, 111-111.	0.6	10
242	A Phase II Study of Modified Lenalidomide, Bortezomib, and Dexamethasone (RVD lite) for Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Blood, 2014, 124, 3454-3454.	0.6	10
243	Activity of CDK1/2 Inhibitor LCQ195 Against Multiple Myeloma Cells Blood, 2007, 110, 1519-1519.	0.6	10
244	Functional dissection of inherited non-coding variation influencing multiple myeloma risk. Nature Communications, 2022, 13, 151.	5.8	10
245	Recent advances in the management of multiple myeloma. Seminars in Hematology, 2004, 41, 21-26.	1.8	9
246	A Phase <scp>II</scp> trial of weekly bortezomib and dexamethasone in veterans with newly diagnosed multiple myeloma not eligible for or who deferred autologous stem cell transplantation. British Journal of Haematology, 2015, 169, 36-43.	1.2	9
247	Deficiency of the immunostimulatory cytokine IL-21 promotes intestinal neoplasia via dysregulation of the Th1/Th17 axis. Oncolmmunology, 2017, 6, e1261776.	2.1	9
248	The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability. Genome Medicine, 2021, 13, 127.	3.6	9
249	Phase 1b/2 study of ciltacabtagene autoleucel, a BCMA-directed CAR-T cell therapy, in patients with relapsed/refractory multiple myeloma (CARTITUDE-1): Two years post-LPI Journal of Clinical Oncology, 2022, 40, 8028-8028.	0.8	9
250	Novel biologically based therapies for multiple myeloma. International Journal of Hematology, 2002, 76, 340-341.	0.7	8
251	Next-Generation Sequencing Informing Therapeutic Decisions and Personalized Approaches. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e442-e448.	1.8	8
252	Tolerance, Kinetics, and Depth of Response for Subcutaneous Versus Intravenous Administration of Bortezomib Combination in Chinese Patients With Newly Diagnosed Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 422-430.	0.2	8

#	Article	IF	CITATIONS
253	YWHAE/14-3-3 $\hat{l}\mu$ expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood, 2020, 136, 468-479.	0.6	8
254	câ€MYC expression and maturity phenotypes are associated with outcome benefit from addition of ixazomib to lenalidomideâ€dexamethasone in myeloma. European Journal of Haematology, 2020, 105, 35-46.	1.1	8
255	Identification of novel anti-tumor therapeutic target via proteomic characterization of ubiquitin receptor ADRM1/Rpn13. Blood Cancer Journal, 2021, 11, 13.	2.8	8
256	<i>miR-15a/16-1</i> deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood, 2021, 137, 1905-1919.	0.6	8
257	PKC412 Is a Multi-Targeting Kinase Inhibitor with Activity Against Multiple Myeloma In Vitro and In Vivo Blood, 2005, 106, 247-247.	0.6	8
258	A Phase II Study of Modified Lenalidomide, Bortezomib, and Dexamethasone (RVD-lite) for Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Blood, 2015, 126, 4217-4217.	0.6	8
259	ABL1 Kinase Plays an Important Role in Spontaneous and Melphalan-Induced Genomic Instability in Multiple Myeloma: Potential Therapeutic Application. Blood, 2020, 136, 51-51.	0.6	8
260	Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Communications Biology, 2021, 4, 617.	2.0	7
261	Phase II Trial of Combination of Bortezomib and Rituximab in Relapsed and/or Refractory Waldenstrom Macroglobulinemia. Blood, 2008, 112, 832-832.	0.6	7
262	A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study Of The Efficacy and Safety Of Siltuximab, An Anti-Interleukin-6 Monoclonal Antibody, In Patients With Multicentric Castleman's Disease. Blood, 2013, 122, 505-505.	0.6	7
263	Dual BCL-2/BCL-XL Inhibitor Pelcitoclax (APG-1252) Overcomes Intrinsic and Acquired Resistance to Venetoclax in Multiple Myeloma Cells. Blood, 2021, 138, 2655-2655.	0.6	7
264	Lenalidomide Polarizes Th1-specific Anti-tumor Immune Response and Expands XBP1 Antigen-Specific Central Memory CD3+CD8+ T cells against Various Solid Tumors. Journal of Leukemia (Los Angeles,) Tj ETQq0 0 (O r gB IT /Ov	erlock 10 Tf !
265	Castleman Disease. Hematology/Oncology Clinics of North America, 2018, 32, xiii-xiv.	0.9	6
266	Detection of minimal residual disease by next generation sequencing in AL amyloidosis. Blood Cancer Journal, 2021, 11, 117.	2.8	6
267	CD44 v5 domain inhibition represses the polarization of Th2 cells by interfering with the ILâ€4/ILâ€4R signaling pathway. Immunology and Cell Biology, 2022, 100, 21-32.	1.0	6
268	The Role of Clonal Hematopoiesis of Indeterminate Potential (CHIP) in Multiple Myeloma: Immunomodulator Maintenance Post Autologous Stem Cell Transplant (ASCT) Predicts Better Outcome. Blood, 2018, 132, 749-749.	0.6	6
269	IPI-504: A Novel hsp90 Inhibitor with In Vitro and In Vivo Anti-Tumor Activity Blood, 2004, 104, 2403-2403.	0.6	6
270	Apoptosis reprogramming triggered by splicing inhibitors sensitizes multiple myeloma cells to Venetoclax treatment. Haematologica, 2022, 107, 1410-1426.	1.7	6

#	Article	IF	CITATIONS
271	Baseline Correlates of Complete Response to Idecabtagene Vicleucel (ide-cel, bb2121), a BCMA-Directed CAR T Cell Therapy in Patients with Relapsed and Refractory Multiple Myeloma: Subanalysis of the KarMMa Trial. Blood, 2021, 138, 1739-1739.	0.6	6
272	Immune Therapies. Hematology/Oncology Clinics of North America, 2007, 21, 1217-1230.	0.9	5
273	Association of Agent Orange With Plasma Cell Disorder. JAMA Oncology, 2015, 1, 1035.	3.4	5
274	A multiple myeloma classification system that associates normal B-cell subset phenotypes with prognosis. Blood Advances, 2018, 2, 2400-2411.	2.5	5
275	In Vitro Silencing of IncRNAs Using LNA GapmeRs. Methods in Molecular Biology, 2021, 2348, 157-166.	0.4	5
276	With Equal Access, African Americans with Non-del17p Multiple Myeloma Have Superior Overall Survival, but del17p Still Carries Poor Prognosis across Race: A VA Study. Blood, 2019, 134, 4388-4388.	0.6	5
277	Dasatinib (BMS-354825): A Multi-Targeted Kinase Inhibitor with Activity Against Multiple Myeloma Blood, 2005, 106, 1571-1571.	0.6	5
278	Establishment of a Waldenstrom's Macroglobulinemia Cell Line (BCWM.1) with Productive In Vivo Engraftment in SCID-hu Mice Blood, 2005, 106, 979-979.	0.6	5
279	BT062, An Antibody-Drug Conjugate Directed Against CD138, Shows Clinical Activity In a Phase I Study In Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2010, 116, 3060-3060.	0.6	5
280	Updated Health-Related Quality of Life Results from the KarMMa Clinical Study in Patients with Relapsed and Refractory Multiple Myeloma Treated with the B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy Idecabtagene Vicleucel (ide-cel, bb2121). Blood, 2021, 138, 2835-2835.	0.6	5
281	Plasma Cell Neoplasms. , 2018, , 1381-1418.e1.		4
282	MEDI2228, a Novel Bcma Antibody-PBD Conjugate, Sensitizes Human Multiple Myeloma Cells to NK Cell-Mediated Cytotoxicity and Upregulates CD38 Expression in MM Cells. Blood, 2019, 134, 3096-3096.	0.6	4
283	Bortezomib Induces Anti-Multiple Myeloma Immune Response Mediated By Cgas/Sting Pathway Activation, Type I Interferon Secretion, and Immunogenic Cell Death: Clinical Application. Blood, 2020, 136, 7-8.	0.6	4
284	Comprehensive Genome-Wide Profile of Regional Gains and Losses in Multiple Myeloma Using Array-CGH: The 1q21 Amplification and Potential Role of the BCL-9 Gene in Multiple Myeloma Pathogenesis Blood, 2004, 104, 785-785.	0.6	4
285	Preclinical In Vitro and In Vivo Evidence Support a Therapeutic Role for the CD70 Directed Monoclonal Antibody (SGN-70) in Waldenstrol^m's Macroglobulinemia (WM) Blood, 2006, 108, 2490-2490.	0.6	4
286	Lenalidomide and Bortezomib Inhibit Osteoclast Differentiation and Activation in Multiple Myeloma: Clinical Implications Blood, 2006, 108, 3485-3485.	0.6	4
287	Phase I Trial of HuLuc63 in Multiple Myeloma Blood, 2007, 110, 1180-1180.	0.6	4
288	AT7519, a Novel Small Molecule Multi-Cyclin Dependent Kinase Inhibitor, Induces Apoptosis in Multiple Myeloma VIA GSK3 \hat{I}^2 . Blood, 2008, 112, 251-251.	0.6	4

#	Article	IF	CITATIONS
289	RAD51 Inhibitor Reverses Etoposide-Induced Genomic Toxicity and Instability in Esophageal Adenocarcinoma Cells., 2020, 2, 3-9.		4
290	Phase I Study of IMGN901 in Patients with Relapsed and Relapsed/Refractory CD56-Positive Multiple Myeloma. Blood, 2008, 112, 3689-3689.	0.6	4
291	Characterization of TFDP1 As Novel Regulatory Gene in Multiple Myeloma. Blood, 2012, 120, 569-569.	0.6	4
292	Disease-Associated Changes In The Repair Efficiency Of Double Strand Breaks Affect Melphalan Sensitivity Of The Bone Marrow Plasma Cells and Correlate With The Clinical Outcome Of Anti-Myeloma Therapy. Blood, 2013, 122, 3723-3723.	0.6	4
293	To transplant or not to transplant?. Blood, 2005, 106, 3687-3688.	0.6	3
294	Monoclonal Gammopathy May Be of Unpredictable Significance. JAMA Oncology, 2019, 5, 1302.	3 . 4	3
295	Characteristics of neurotoxicity associated with idecabtagene vicleucel (ide-cel, bb2121) in patients with relapsed and refractory multiple myeloma (RRMM) in the pivotal phase II KarMMa study Journal of Clinical Oncology, 2021, 39, 8036-8036.	0.8	3
296	Pathogenetic and Prognostic Implications of Increased Mitochondrial Content in Multiple Myeloma. Cancers, 2021, 13, 3189.	1.7	3
297	Don't Compromise Myeloma Care Due to COVID-19 Pandemic!. Blood Cancer Discovery, 2020, 1, 218-220.	2.6	3
298	Preclinical Validation Studies Support Causal Machine Learning Based Identification of Novel Drug Targets for High-Risk Multiple Myeloma. Blood, 2018, 132, 3210-3210.	0.6	3
299	Anti-Tumor Activity of KOS-953, a Cremophor-Based Formulation of the hsp90 Inhibitor 17-AAG Blood, 2004, 104, 2404-2404.	0.6	3
300	A Novel Orally Available Proteasome Inhibitor NPI-0052 Induces Killing in Multiple Myeloma (MM) Cells Resistant to Conventional and Bortezomib Therapies Blood, 2004, 104, 2405-2405.	0.6	3
301	Dendritic Cell Myeloma Fusions Stimulate Anti-Tumor Immunity: Results from Pre-Clinical Studies and a Clinical Trial Blood, 2004, 104, 751-751.	0.6	3
302	The Role of B Cell-Activating Factor (BAFF) in the Biology of Multiple Myeloma (MM) Blood, 2005, 106, 3380-3380.	0.6	3
303	Bone Marrow Mast Cells Are Significantly Increased in Patients with Waldenstrom's Macroglobulinemia, and Their Number Following Therapeutic Intervention Is Dependent on Extent of Response Blood, 2005, 106, 980-980.	0.6	3
304	Promoting Osteoblastogenesis Using a Novel Dkk-1 Neutralizing Antibody in the Treatment of Multiple Myeloma Related Bone Disease. Blood, 2008, 112, 2739-2739.	0.6	3
305	Combination of a Novel Proteasome Inhibitor NPI-0052 and Lenalidomide Trigger in Vivo Synergistic Cytotoxicity in Multiple Myeloma. Blood, 2008, 112, 3662-3662.	0.6	3
306	Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Reverse Immunosuppression in Multiple Myeloma. Blood, 2016, 128, 2106-2106.	0.6	3

#	Article	IF	CITATIONS
307	Higher c-MYC Expression Is Associated with Ixazomib-Lenalidomide-Dexamethasone (IRd) Progression-Free Survival (PFS) Benefit Versus Placebo-Rd: Biomarker Analysis of the Phase 3 Tourmaline-MM1 Study in Relapsed/Refractory Multiple Myeloma (RRMM). Blood, 2016, 128, 243-243.	0.6	3
308	Multimorbidity patterns and their association with survival in a large national cohort of older veterans with multiple myeloma Journal of Clinical Oncology, 2019, 37, 8033-8033.	0.8	3
309	JNK Activation and Fas Up-Regulation Precede Proteasomal Degradation of Topoisomerase I in SN38-Mediated Cytotoxicity Against Multiple Myeloma Blood, 2004, 104, 3413-3413.	0.6	3
310	The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Potent and Selective Cytotoxicity against CD138 Positive Multiple Myeloma Cells in Vitro and in Vivo Blood, 2008, 112, 1716-1716.	0.6	3
311	Proteasome Inhibitors Sensitize Myeloma Cells to T Cell-Mediated Killing. Blood, 2011, 118, 1838-1838.	0.6	3
312	Infectious Complications in Patients Treated with Idecabtagene Vicleucel for Relapsed and Refractory Multiple Myeloma. Blood, 2021, 138, 3839-3839.	0.6	3
313	Activation of the ERK Pathway Drives Acquired Resistance to Venetoclax in MM Cell Models. Blood, 2020, 136, 21-22.	0.6	3
314	Lenalidomide, bortezomib, and dexamethasone (RVd) $\hat{A}\pm$ autologous stem cell transplantation (ASCT) and R maintenance to progression for newly diagnosed multiple myeloma (NDMM): The phase 3 DETERMINATION trial Journal of Clinical Oncology, 2022, 40, LBA4-LBA4.	0.8	3
315	Management Strategies for Relapsed Multiple Myeloma. American Journal of Cancer, 2006, 5, 393-409.	0.4	2
316	Lenalidomide plus dexamethasone is efficacious in patients with relapsed or refractory multiple myeloma. Nature Clinical Practice Oncology, 2008, 5, 374-375.	4.3	2
317	The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells in vitro and in vivo. Nature Precedings, 2008, , .	0.1	2
318	Second primary malignancies (SPM) in African American (AA) and white patients with multiple myeloma in the National Veterans Affairs (VA) healthcare system. Journal of Clinical Oncology, 2021, 39, 10507-10507.	0.8	2
319	The MEK1/2 Inhibitor AZD6244 (ARRY-142886) Downregulates Constitutive and Adhesion-Induced c-MAF Oncogene Expression and Its Downstream Targets in Human Multiple Myeloma Blood, 2006, 108, 3463-3463.	0.6	2
320	Anti-Myeloma Activity of the Small-Molecule Aurora Kinase Inhibitor VE465 Blood, 2006, 108, 3468-3468.	0.6	2
321	Anti-Myeloma Activity of Selective PI-3K/PDK/mTOR Inhibitor BEZ235 Blood, 2007, 110, 1185-1185.	0.6	2
322	Phase I Study of Vaccination with Dendritic Cell Myeloma Fusions Blood, 2007, 110, 284-284.	0.6	2
323	Phase II Trial of the Oral mTOR Inhibitor RAD001 (Everolimus) in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4496-4496.	0.6	2
324	Blockade of XBP1 Splicing by Inhibition of IRE1 \hat{l}_{\pm} Is a Promising Therapeutic Option in Multiple Myeloma. Blood, 2011, 118, 133-133.	0.6	2

#	Article	IF	CITATIONS
325	Blockade of Nuclear Export Protein CRM1 (chromosomal region maintenance 1, XPO1) by a Novel, Potent and Selective CRM1 Inhibitor KPT-185 Induces Significant Antitumor Activity Against Human Multiple Myeloma. Blood, 2011, 118, 2913-2913.	0.6	2
326	Biomarker Correlation with Outcomes in Patients with Relapsed or Refractory Multiple Myeloma on a Phase I Study of Everolimus in Combination with Lenalidomide,. Blood, 2011, 118, 3966-3966.	0.6	2
327	Elevated APE1 Mediates Dysregulation of Homologous Recombination in Myeloma: Mechanisms and Translational Significance. Blood, 2014, 124, 2074-2074.	0.6	2
328	Efficacy of siltuximab in patients with previously treated multicentric Castleman's disease (MCD) Journal of Clinical Oncology, 2014, 32, 8514-8514.	0.8	2
329	Enhanced Cytotoxicity of Monoclonal Antibody SGN-40 and Immunomodulatory Drug IMiD3 Against Human Multiple Myeloma Blood, 2004, 104, 1498-1498.	0.6	2
330	Distinct Dynamic Profiles for NPI-0052-And Bortezomib-Induced Apoptosis in Multiple Myeloma Blood, 2006, 108, 3396-3396.	0.6	2
331	Targeting Immune Suppressive Microenvironment By Immune Checkpoint Blockade in Multiple Myeloma. Blood, 2014, 124, 27-27.	0.6	2
332	The Multiple Myeloma Genome Project: Development of a Molecular Segmentation Strategy for the Clinical Classification of Multiple Myeloma. Blood, 2016, 128, 196-196.	0.6	2
333	Dysregulation of Splicing in Multiple Myeloma: The Splicing Factor SRSF1 Supports MM Cell Proliferation Via Splicing Control. Blood, 2018, 132, 4500-4500.	0.6	2
334	B Cell Transcriptional Coactivator <i>POU2AF1</i> (BOB-1) Is an Early Transcription Factor Modulating the Protein Synthesis and Ribosomal Biogenesis in Multiple Myeloma: With Therapeutic Implication. Blood, 2021, 138, 2670-2670.	0.6	2
335	Impact of Autologous Hematopoietic Cell Transplant (HCT) Followed By Dendritic Cell/Myeloma Fusion Vaccine with Lenalidomide Maintenance in Increasing Multiple Myeloma (MM) Immunity (BMT) Tj ETQq1 I	. ത7 84314	1 ægBT /Over
336	In Multiple Myeloma, High-Risk Secondary Genetic Events Observed at Relapse Are Present from the Diagnosis in Tiny Undetectable Subclones. Blood, 2021, 138, 77-77.	0.6	2
337	Enhancing the Immune Surveillance in Multiple Myeloma Via CDK4/6 Inhibition. Blood, 2020, 136, 33-34.	0.6	2
338	Pomalidomide for the treatment of relapsed and refractory multiple myeloma. Expert Opinion on Orphan Drugs, 2014, 2, 1089-1108.	0.5	1
339	Solitary Extramedullary Multiple Myeloma Presenting with Small Bowel Obstruction. Journal of Emergency Medicine, 2016, 50, e25-e27.	0.3	1
340	Dendritic Cells and Peptide-Based Vaccine In Multiple Myeloma. , 2013, , 131-154.		1
341	Discovery of a Novel Mechanism of Resistance to Thalidomide Derivatives. Blood, 2018, 132, 949-949.	0.6	1
342	Bcma Heteroclitic Peptide Encapsulated Nanoparticle Enhances Antigen Stimulatory Capacity and Tumor-Specific CD8+ cytotoxic T Lymphocytes Against Multiple Myeloma. Blood, 2018, 132, 3195-3195.	0.6	1

#	Article	IF	Citations
343	Continuous Pre-Dose Assessment of Laboratory Parameters Is Not Required for Multiple Myeloma Patients Receiving Lenalidomide, Bortezomib, and Dexamethasone (RVD). Blood, 2020, 136, 11-11.	0.6	1
344	Requirement of Caspase-8 Versus Caspase-9 during Apoptosis in Multiple Myeloma Cells Induced by Bortezomib- or a Novel Proteasome Inhibitor NPI-0052 Blood, 2005, 106, 3378-3378.	0.6	1
345	CD27-Mediated Apoptosis Is Dependent on Siva-Induced Caspase Activation in Human Multiple Myeloma Blood, 2005, 106, 3398-3398.	0.6	1
346	Inhibition of ERK1/2 Activity by the MEK1/2 Inhibitor AZD6244 (ARRY-142886) Induces Human Multiple Myeloma Cell Apoptosis in the Bone Marrow Microenvironment: A New Therapeutic Strategy for MM Blood, 2006, 108, 3460-3460.	0.6	1
347	A Novel SIRT1 Activator SIRT1720 Triggers In Vitro and In Vivo Cytotoxicity In Multiple Myeloma Via ATM-Dependent Mechanism. Blood, 2010, 116, 3007-3007.	0.6	1
348	Phase I Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy in Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2011, 118, 1874-1874.	0.6	1
349	Differences in the Angiogenic Response and Subsequent Growth of Plasma Cells From Myeloma and MGUS Patients Xenografted Into Zebrafish Embryos Blood, 2012, 120, 2912-2912.	0.6	1
350	Dysregulation of SHFM1, a Novel Target for Prevention of Genomic Instability in Myeloma, Is Associated with Epigenetic Changes at Specific CpG Sites. Blood, 2014, 124, 862-862.	0.6	1
351	A Detailed Alternate Splicing Landscape in Multiple Myeloma with Significant Potential Biological and Clinical Implications. Blood, 2016, 128, 356-356.	0.6	1
352	Effect of siltuximab on lean body mass (LBM) in multicentric Castleman's disease (MCD) patients (pts) Journal of Clinical Oncology, 2014, 32, 8576-8576.	0.8	1
353	Molecular Mechanisms Underlying the Development of Drug Resistance in Multiple Myeloma Blood, 2004, 104, 3409-3409.	0.6	1
354	Increased TCF-4 Expression Correlates with Reduced Caspase-3 Induction and Confers Resistance to Bortezomib Blood, 2004, 104, 285-285.	0.6	1
355	Novel Hydroxamic Acid-Derived HDAC Inhibitor LBH589 Potently Activates Intrinsic and Extrinsic Apoptotic Pathways, and Induces Tubulin Hyperacetylation in Multiple Myeloma Blood, 2005, 106, 1578-1578.	0.6	1
356	Dysfunctional T Regulatory Cells in Myeloma: Molecular Mechanisms of Dysregulation Blood, 2005, 106, 3462-3462.	0.6	1
357	Critical Role of Recombinase (HsRAD51) in Genetic Instability in Multiple Myeloma Blood, 2006, 108, 2078-2078.	0.6	1
358	The BAFF Inhibitor AMG523 Blocks Adhesion and Survival of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment: Clinical Implication Blood, 2006, 108, 3452-3452.	0.6	1
359	Combination of Proteasome Inhibitors Bortezomib and NPI-0052 Trigger In Vivo Synergistic Cytotoxicity in Multiple Myeloma Blood, 2007, 110, 2524-2524.	0.6	1
360	Phase II Trial of Combination of Bortezomib and Rituximab in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4494-4494.	0.6	1

#	Article	IF	CITATIONS
361	Biological and Therapeutic Potential of Mir-155, 585 and Let-7f in Myeloma in Vitro and In Vivo Blood, 2009, 114, 833-833.	0.6	1
362	AT9283, a Small Molecule Multi-Targeted Kinase Inhibitor Induces Antimyeloma Activity Via Potent Aurora Kinase and STAT3 Inhibition Blood, 2009, 114, 3833-3833.	0.6	1
363	Hematological Testing Is Not Required with Every Dose of Bortezomib In Patients with Adequate Blood Counts at the Start of Each Cycle. Blood, 2010, 116, 1963-1963.	0.6	1
364	Identification of Significant Barriers to Accrual (BtA) to NCI Sponsored Multiple Myeloma – Clinical Trials (MM-CT): A Step towards Improving Accrual to Clinical Trials Blood, 2012, 120, 3165-3165.	0.6	1
365	Cytoskeleton Regulator PAK4 Plays a Role in Growth and Survival of Myeloma with a Potential Therapeutic Intervention Using PAK4 Allosteric Modulators (PAMs). Blood, 2014, 124, 3381-3381.	0.6	1
366	Enhanced CD138 peptide-specific cytotoxic T lymphocyte activities against breast, colon and pancreatic cancers in combination with pembrolizumab (anti-PD1) Journal of Clinical Oncology, 2019, 37, e14302-e14302.	0.8	1
367	Defining Genomic Probability of Progression to Identify Low-Risk Smoldering Multiple Myeloma. Blood, 2021, 138, 545-545.	0.6	1
368	Quality of Life, Psychological Distress, and Prognostic Awareness in Caregivers of Patients with Multiple Myeloma. Blood, 2021, 138, 3044-3044.	0.6	1
369	Inadequate Sars-Cov-2 Vaccine Effectiveness in Patients with Multiple Myeloma: A Large Nationwide Veterans Affairs Study. Blood, 2021, 138, 400-400.	0.6	1
370	Atpase Family AAA Domain-Containing Protein 2 (ATAD2) As a Novel Target in Multiple Myeloma. Blood, 2020, 136, 50-50.	0.6	1
371	Base Excision Repair and Homologous Recombination Pathway Intermediates Drive Genomic Instability and Evolution in Myeloma. Blood, 2020, 136, 27-28.	0.6	1
372	Disruption of the m-SWI/SNF Complex Mediated By Recurrent Non-Coding Mutations in BCL7A Induces Tumor Cell Proliferation in Multiple Myeloma. Blood, 2020, 136, 40-40.	0.6	1
373	The impact of ASCT on patients with newly diagnosed multiple myeloma who receive RVD induction. Journal of Hematological Malignancies, 2013, 3, .	0.0	0
374	Reply to M. Roschewski et al. Journal of Clinical Oncology, 2014, 32, 478-478.	0.8	0
375	Introduction by the Guest Editor. Cancer Journal (Sudbury, Mass), 2019, 25, 1-1.	1.0	0
376	Perceptions of prognosis in caregivers of multiple myeloma (MM) patients Journal of Clinical Oncology, 2021, 39, 12082-12082.	0.8	0
377	PDC-E2, a Common Auto Antigen in Primary Biliary Cirrhosis (PBC) Is Also a Target of an Antibody Response in Patients Who Achieve Complete Remission after Donor Lymphocyte Infusion Blood, 2004, 104, 2121-2121.	0.6	0
378	A Clinically Relevant SCID-hu in Vivo Model of Human Multiple Myeloma Blood, 2004, 104, 2455-2455.	0.6	0

#	Article	IF	CITATIONS
379	Atiprimod (N-N-diethl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) Inhibits Myeloma in Vivo Blood, 2004, 104, 2401-2401.	0.6	O
380	SDX-101 Is Cytotoxic and Overcomes Drug Resistance in Multiple Myeloma Blood, 2004, 104, 3466-3466.	0.6	0
381	Induction of Multiple Myeloma-Specific Cytotoxic T Lymphocytes Using HLA-A2.1-Specific CD19 and CD20 Peptides Blood, 2004, 104, 2477-2477.	0.6	0
382	Evaluation of the Ras/B-Raf/SHP-2 Axis in B Cell Malignancies Blood, 2004, 104, 4344-4344.	0.6	0
383	Tumor Antigen Immunization of Sibling Stem Cell Transplant Donors in Multiple Myeloma Blood, 2004, 104, 3340-3340.	0.6	O
384	Targeting Mitochondrial Factor Smac/DIABLO as Therapy for Multiple Myeloma (MM) Blood, 2004, 104, 764-764.	0.6	0
385	Alkylphosphocholine Perifosine Inhibits Myeloma Cell Growth While Inducing Myeloid Hyperplasia in a Murine Myeloma Model Blood, 2005, 106, 1579-1579.	0.6	0
386	Chromosomal Deletions and Amplifications in Multiple Myeloma Detected by 500K Single Nucleotide Polymorphism Array Analysis Blood, 2005, 106, 1551-1551.	0.6	0
387	Immunomodulatory Drug Lenalidomide (CC-5013, IMiD3) Augments Anti-CD40 SGN-40-Induced Cytotoxicity in Human Multiple Myeloma: Clinical Implications Blood, 2005, 106, 5150-5150.	0.6	0
388	Role of BAFF in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment Blood, 2005, 106, 627-627.	0.6	0
389	In Vitro Generation of Highly-Purified Functional Invariant NKT Cells: A Strategy for Immunotherapy in Multiple Myeloma Blood, 2005, 106, 5183-5183.	0.6	0
390	Didox Induced Apoptosis Occurs by Inhibiting DNA Synthesis and Repair Via Down-Regulation of Ribonucleotide Reductase M1 in Multiple Myeloma (MM) Blood, 2005, 106, 5153-5153.	0.6	0
391	Vaccination with Dendritic Cell Myeloma Fusions Alone or in Conjunction with Stem Cell Transplantation for Patients with Multiple Myeloma Blood, 2006, 108, 3080-3080.	0.6	0
392	A Novel Real-Time In Vivo Homing Model of Multiple Myeloma Blood, 2006, 108, 242-242.	0.6	0
393	Elevated Apurinic/Apyrimidinic Endonuclease Activity Significantly Contributes to DNA Instability in Multiple Myeloma Blood, 2006, 108, 2077-2077.	0.6	0
394	Physical and Functional Association of the MRN Complex with Human Telomerase in Multiple Myeloma Blood, 2006, 108, 5076-5076.	0.6	0
395	Clinical, Radiographic, and Biomarker Characterization of Multiple Myeloma Patients with Bisphosphonate Associated Osteonecrosis of the Jaw Blood, 2006, 108, 3591-3591.	0.6	0
396	In Vitro Generation of Highly Purified Functional Invariant NKT Cells in Multiple Myeloma: A Strategy for Immunotherapy Blood, 2006, 108, 5104-5104.	0.6	0

#	Article	IF	CITATIONS
397	Bcl-2, Mcl-1 and p53 Expression Confer Sensitivity to Bcl-2 Inhibitor ABT-737 in Multiple Myeloma Blood, 2006, 108, 3474-3474.	0.6	О
398	Phenotypic and Functional Effects of Perifosine on Dendritic Cells Blood, 2007, 110, 4803-4803.	0.6	0
399	OFD1-Mediated T Cell Responses in MGUS Patients: Implications for Immunotherapy Blood, 2007, 110, 1488-1488.	0.6	О
400	Modulation of Gene Expression Profile and In Vivo Anti-Myeloma Activity Induced by Valproic Acid, a Histone Deacytylase Inhibitor Blood, 2007, 110, 4790-4790.	0.6	0
401	Sp1 Transcription Factor as a Novel Therapeutic Target in Multiple Myeloma (MM). Blood, 2008, 112, 3664-3664.	0.6	O
402	TH17 Pathway Promotes Tumor Cell Growth and Suppresses Immune Function in Myeloma: Potential for Therapeutic Application. Blood, 2008, 112, 2737-2737.	0.6	0
403	Microenvironment-Dependent Synthetic Lethality: Implications for Tumor Pathophysiology and Anti-Cancer Drug Discovery Blood, 2009, 114, 1722-1722.	0.6	0
404	Molecular Sequaele of Activin A-Dependent Osteoblast Inhibition in Myeloma Blood, 2009, 114, 1789-1789.	0.6	0
405	Immunomodulatory EFFECTS of Lenalidomide and Pomalidomide ON INTERACTION of TUMOR and BONE MARROW Accessory CELLS IN MULTIPLE MYELOMA Blood, 2009, 114, 950-950.	0.6	0
406	A NOVEL Aurora A Kinase INHIBITOR MLN8237 Induces Cytotoxicity and CELL Cycle Arrest IN MULTIPLE MYELOMA Blood, 2009, 114, 3830-3830.	0.6	0
407	Significant Biological Role of Sp1 Transactivation in Myeloma: Potential Therapeutic Application Blood, 2009, 114, 1841-1841.	0.6	0
408	Bcl6 as a Novel Therapeutic Target in Multiple Myeloma (MM) Blood, 2009, 114, 295-295.	0.6	0
409	An Investigational Novel Orally Bioavailable Proteasome Inhibitor MLN9708/MLN2238 Triggers Cytotoxicity In Multiple Myeloma Cells Via p21- and Caspase-8-Dependent Signaling Pathway. Blood, 2010, 116, 2992-2992.	0.6	0
410	Anti-Myeloma Activity of Enzymatically Activated Melphalan Prodrug J1. Blood, 2010, 116, 1838-1838.	0.6	0
411	Bone Marrow Niche Down-Regulates Mir-30 In Multiple Myeloma Cells to Promote Cancer Progression and Cancer Initiation by Targeting BCL9/Wnt Pathway Blood, 2010, 116, 1569-1569.	0.6	0
412	Compartment-Specific Bioluminescence Imaging Platform for the Open-Ended Identification of Novel Immunomodulatory Agents and High-Throughput Evaluation of Anti-Tumor Immune Function. Blood, 2010, 116, 451-451.	0.6	0
413	Targeting Sp1 Transactivation In Waldenstrom's Macroglobulinemia: a Novel Therapeutic Option. Blood, 2010, 116, 120-120.	0.6	0
414	Gene Mutations Detected by Whole-Exome Sequencing and Recurrent Cytogenetic Abnormalities Are Independent Events in Multiple Myeloma. Blood, 2011, 118, 1816-1816.	0.6	0

#	Article	IF	Citations
415	MiR-34a Replacement As a Novel Therapeutic Approach for Multiple Myeloma: Preclinical In Vitro and In Vivo Evidence. Blood, 2011, 118, 2910-2910.	0.6	О
416	Perifosine Plus Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma Patients Previously Treated with Bortezomib: Final Results of a Phase I/II Trial. Blood, 2011, 118, 815-815.	0.6	0
417	RVD Induction Followed by Consolidation with ASCT in Patients with Newly Diagnosed Multiple Myeloma,. Blood, 2011, 118, 4134-4134.	0.6	O
418	Myeloid Derived Suppressor Cells (MDSCs) Regulate Tumor Growth, Immune Response and Regulatory T Cell (Treg) Development in the Multiple Myeloma Bone Marrow Microenvironment. Blood, 2012, 120, 565-565.	0.6	0
419	Integrating Gene and Mir Expression Profiles and Regulatory Network Structures to Define Aberrent Feed Forward Loops with Functional and Clinical Implications in Myeloma Blood, 2012, 120, 2386-2386.	0.6	0
420	Formation of the Functional Niche in Vitro by Mimicking the Pathophysiological Features of the Bone Marrow Microenvironment in Multiple Myeloma. Blood, 2012, 120, 1812-1812.	0.6	0
421	Role Of Base Excision Repair Associated AP Nuclease Activity In The Induction Of Homologous Recombination Repair Pathway and Survival Of MM Cells Following DNA Damage. Blood, 2013, 122, 1248-1248.	0.6	O
422	Constitutive B-Cell Maturation Antigen (BCMA) Activation In Human Multiple Myeloma Cells Promotes Myeloma Cell Growth and Survival In The Bone Marrow Microenvironment Via Upregulated MCL-1 and NFκB Signaling. Blood, 2013, 122, 681-681.	0.6	0
423	Identification Of Novel Alternative Splice Variants Of Sirtuins In Multiple Myeloma: Therapeutic Implications. Blood, 2013, 122, 3121-3121.	0.6	0
424	Antitumor Activities Of An Oral Selective HSP90 $\hat{l}\pm\hat{l}^2$ Inhibitor, TAS-116, In Combination With Bortezomib In Multiple Myeloma. Blood, 2013, 122, 4429-4429.	0.6	0
425	Telomerase Contributes To Repair Of DNA Breaks In Myeloma Cells By Incorporating "TTAGGG― Sequences Within Genome: Biological and Translational Significance. Blood, 2013, 122, 1249-1249.	0.6	0
426	Inhibition Of H3K27-Methylome As a Novel Therapeutic Strategy In Multiple Myeloma. Blood, 2013, 122, 3162-3162.	0.6	0
427	Elevated Nuclease Activity Correlates With Clinical Spectrum Of Plasma Cell Dyscrasias. Blood, 2013, 122, 4885-4885.	0.6	О
428	Time to Development of Treatment-Emergent Extramedullary and Osseous Plasmacytomas in the Era of Novel Agents: An Analysis of Upfront Regimens in Newly Diagnosed MM Incorporating Lenalidomide and Bortezomib. Blood, 2014, 124, 3468-3468.	0.6	0
429	IL-17A-Mediated Notch Signaling in Multiple Myeloma. Blood, 2014, 124, 3434-3434.	0.6	0
430	Mimicking Myeloma Niche Ex Vivo. Blood, 2014, 124, 2076-2076.	0.6	0
431	Evaluation of Immune Profile in Patients with Multiple Myeloma Using Cytof Technology. Blood, 2014, 124, 3404-3404.	0.6	0
432	Incidence and Clinical Features of Extramedullary Multiple Myeloma in Patients Who Underwent Stem Cell Transplantation. Blood, 2014, 124, 5746-5746.	0.6	0

#	Article	IF	CITATIONS
433	Long Intergenic Non-Coding RNAs (lincRNA) Impacts Biology and Clinical Outcome in Multiple Myeloma. Blood, 2014, 124, 642-642.	0.6	O
434	Differential and Limited Expression of Mutant Alleles in Multiple Myeloma. Blood, 2014, 124, 2007-2007.	0.6	0
435	Inter and Intra-Clonal Heterogeneity in Multiple Myeloma and Waldenstrom Macroglobulinemia. Blood, 2014, 124, 2070-2070.	0.6	0
436	Dysregulated Nucleotide Excision Repair (NER) Is a New Target in Multiple Myeloma. Blood, 2015, 126, 4187-4187.	0.6	0
437	Selective Activation of the Non-Classical Estrogen Receptor Gper Elicits Potent Anti-Tumor Activity in Multiple Myeloma. Blood, 2015, 126, 916-916.	0.6	0
438	ABL Tyrosine Kinase Plays an Important Role in Mechanisms Involved in Genomic Instability in Multiple Myeloma. Blood, 2016, 128, 2087-2087.	0.6	0
439	ILF2-YB1 Protein Interaction Modulates RNA Splicing to Induce Resistance to Chemotherapy in High Risk Multiple Myeloma. Blood, 2016, 128, 359-359.	0.6	0
440	Global Genomic Analysis of Newly Diagnosed t(4;14) Multiple Myeloma Reveals a Specific Mutational Spectrum and Identifies PKD2 As a Potential Therapeutic Target. Blood, 2016, 128, 4462-4462.	0.6	0
441	The Complex Landscape of Rearrangements in Smoldering and Symptomatic Multiple Myeloma Revealed By Whole-Genome Sequencing. Blood, 2016, 128, 236-236.	0.6	0
442	Deubiquitylating Enzyme USP1 As Therapeutic Target in Multiple Myeloma. Blood, 2016, 128, 3290-3290.	0.6	0
443	Whole Exome Sequencing and Targeted Sequencing Reveal the Heterogeneity of Genomic Evolution and Mutational Profile in Smoldering Multiple Myeloma. Blood, 2016, 128, 237-237.	0.6	0
444	Flap Structure-Specific Endonuclease 1 (FEN1) May be a Key Mediator of Genome Instability in Myeloma: A Cellular Vulnerability with Potential Therapeutic Significance. Blood, 2016, 128, 4440-4440.	0.6	0
445	Chromatin Histone Modifying and DNA Repair Inhibition Enhances the Anti-Myeloma Activity of Melphalan. Blood, 2016, 128, 4437-4437.	0.6	0
446	Functional Role of Linc-RNAs in Multiple Myeloma: Linc-MIR17HG Affects Fatty Acid Biosynthesis Via transcriptional Regulation of ACC1 with Potential Therapeutic Implications. Blood, 2018, 132, 1925-1925.	0.6	0
447	Selective Targeting of Multiple Myeloma By Bcma-Specific Central Memory CD8+ cytotoxic T Lymphocytes: A Potential Immunotherapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders. Blood, 2018, 132, 3196-3196.	0.6	0
448	Quality of Life, Psychological Distress, and Prognostic Awareness in Patients with Multiple Myeloma. Blood, 2021, 138, 4082-4082.	0.6	0
449	Presence of Extrachromosomal DNA (ecDNA) Impacts Both Progression Free and Overall Survival and Is an Independent Poor Prognostic Marker in Multiple Myeloma. Blood, 2021, 138, 461-461.	0.6	0
450	Transcriptional Deregulation Mediated By ID2-TCF3 Axis Supports MM Cell Growth and Proliferation in the Context of the Bone Marrow Milieu. Blood, 2021, 138, 2686-2686.	0.6	0

#	Article	IF	CITATIONS
451	Decreasing Costs and Clinic Wait Time While Maintaining Safety for Patients Receiving Lenalidomide, Bortezomib, and Dexamethasone (RVD) for Multiple Myeloma. Blood, 2021, 138, 666-666.	0.6	O
452	16p Deletion Involving BCMA Locus Is Frequent and Predominantly Observed with del17p. Blood, 2021, 138, 1590-1590.	0.6	0
453	Rejuvenated BCMA-Specific CD8 + Cytotoxic T Lymphocytes Derived from Antigen-Specific Induced Pluripotent Stem Cells: Immunotherapeutic Application in Multiple Myeloma. Blood, 2021, 138, 75-75.	0.6	0
454	A Phase I/II Study of Twice Weekly Ixazomib Plus Pomalidomide and Dexamethasone in Relapsed and Refractory Multiple Myeloma. Blood, 2021, 138, 1650-1650.	0.6	0
455	Clonal Hematopoiesis Is Frequent and Associated with Inferior Survival Irrespective of Transplantation Strategy in Patients with Newly Diagnosed Multiple Myeloma. Blood, 2021, 138, 1127-1127.	0.6	0
456	Aberrant CDK7 Activity Drives the Cell Cycle and Transcriptional Dysregulation to Support Multiple Myeloma Growth: An Attractive Molecular Vulnerability. Blood, 2021, 138, 2687-2687.	0.6	0
457	RNA Regulator of Lipogenesis (RROL) Is a Novel Lncrna Mediating Protein-Protein Interaction at Gene Regulatory Loci Driving Lipogenic Programs in Multiple Myeloma. Blood, 2020, 136, 20-21.	0.6	0
458	A Prospective Study and Identification of Genomewide Association Markers of Familial Predisposition to Plasma Cell Dyscrasias. Blood, 2020, 136, 8-8.	0.6	0
459	A Novel CD138-Targeting Monoclonal Antibody Induces Potent Myeloma Killing and Further Synergizes with IMiDs or Bortezomib in in Vitro and In Vivo Preclinical Models of Human Multiple Myeloma. Blood, 2020, 136, 30-31.	0.6	0
460	TRAF2 Mediates Sensitivity to Immunomodulatory Drugs in the Bone Marrow Microenvironment. Blood, 2020, 136, 31-31.	0.6	0
461	A High Throughput Functional Screen Identifies a Novel Apex Inhibitor: Augments Cytotoxicity While Significantly Decreasing Genomic Evolution in Myeloma. Blood, 2020, 136, 10-11.	0.6	0
462	A Phase I/II Study of Twice Weekly Ixazomib Plus Pomalidomide and Dexamethasone in Relapsed and Refractory Multiple Myeloma: Results from Phase I Dose Escalation Cohorts. Blood, 2020, 136, 1-2.	0.6	0
463	Exploring <i>POU2AF1 (</i> BOB-1 <i>) D</i> ependency and Transcription Addiction in Multiple Myeloma. Blood, 2020, 136, 49-49.	0.6	0
464	Genomic and Transcriptomic Characterization of IgM Multiple Myeloma Identifies a Pre-Germinal Center Plasma Cell Disorder with Immature B-Cell Transcription-Factor Signature. Blood, 2020, 136, 7-8.	0.6	0
465	Targeting MM at the Nexus between Cell Cycle and Transcriptional Regulation Via CDK7 Inhibition. Blood, 2020, 136, 1-2.	0.6	0
466	Development of B-cell maturation antigen (BCMA)-specific CD8 ⁺ cytotoxic T lymphocytes using induced pluripotent stem cell technology for multiple myeloma Journal of Clinical Oncology, 2022, 40, 2542-2542.	0.8	O