Matteo Cargnello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5910498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfur-treated TiO ₂ shows improved alcohol dehydration activity and selectivity. Nanoscale, 2022, 14, 2848-2858.	2.8	3
2	Colloidal Platinum–Copper Nanocrystal Alloy Catalysts Surpass Platinum in Low-Temperature Propene Combustion. Journal of the American Chemical Society, 2022, 144, 1612-1621.	6.6	24
3	Microkinetic Modeling of Propene Combustion on a Stepped, Metallic Palladium Surface and the Importance of Oxygen Coverage. ACS Catalysis, 2022, 12, 1742-1757.	5.5	13
4	Steering CO ₂ hydrogenation toward C–C coupling to hydrocarbons using porous organic polymer/metal interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
5	Recycling of Solvent Allows for Multiple Rounds of Reproducible Nanoparticle Synthesis. Journal of the American Chemical Society, 2022, 144, 11646-11655.	6.6	8
6	Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena. Nanoscale, 2021, 13, 930-938.	2.8	24
7	A General Approach for Monolayer Adsorption of High Weight Loadings of Uniform Nanocrystals on Oxide Supports. Angewandte Chemie - International Edition, 2021, 60, 7971-7979.	7.2	6
8	A General Approach for Monolayer Adsorption of High Weight Loadings of Uniform Nanocrystals on Oxide Supports. Angewandte Chemie, 2021, 133, 8050-8058.	1.6	2
9	Rationalizing an Unexpected Structure Sensitivity in Heterogeneous Catalysis—CO Hydrogenation over Rh as a Case Study. ACS Catalysis, 2021, 11, 5189-5201.	5.5	20
10	Support Acidity Improves Pt Activity in Propane Combustion in the Presence of Steam by Reducing Water Coverage on the Active Sites. ACS Catalysis, 2021, 11, 6672-6683.	5.5	19
11	Monolayer Support Control and Precise Colloidal Nanocrystals Demonstrate Metal–Support Interactions in Heterogeneous Catalysts. Advanced Materials, 2021, 33, e2104533.	11.1	13
12	Insights and comparison of structure–property relationships in propane and propene catalytic combustion on Pd- and Pt-based catalysts. Journal of Catalysis, 2021, 401, 89-101.	3.1	24
13	Atmospheric methane removal: a research agenda. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200454.	1.6	44
14	Steam-created grain boundaries for methane C–H activation in palladium catalysts. Science, 2021, 373, 1518-1523.	6.0	105
15	Voltage cycling process for the electroconversion of biomass-derived polyols. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
16	Insight into restructuring of Pd-Au nanoparticles using EXAFS. Radiation Physics and Chemistry, 2020, 175, 108304.	1.4	9
17	A Combined Theoryâ€Experiment Analysis of the Surface Species in Lithiumâ€Mediated NH ₃ Electrosynthesis. ChemElectroChem, 2020, 7, 1542-1549.	1.7	67
18	Dilute Pd/Au Alloys Replace Au/TiO ₂ Interface for Selective Oxidation Reactions. ACS Catalysis, 2020, 10, 1716-1720.	5.5	14

#	Article	IF	CITATIONS
19	Local Structural Distortions and Failure of the Surface-Stress "Core–Shell―Model in Brookite Titania Nanorods. Chemistry of Materials, 2020, 32, 286-298.	3.2	5
20	Readily Constructed Glass Piston Pump for Gas Recirculation. ACS Omega, 2020, 5, 16455-16459.	1.6	5
21	A phytophotonic approach to enhanced photosynthesis. Energy and Environmental Science, 2020, 13, 4794-4807.	15.6	5
22	Dynamics of Copper-Containing Porous Organic Framework Catalysts Reveal Catalytic Behavior Controlled by the Polymer Structure. ACS Catalysis, 2020, 10, 9356-9365.	5.5	6
23	Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2020, 142, 14481-14494.	6.6	25
24	Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Central Science, 2020, 6, 1916-1937.	5.3	38
25	Reducing instability in dispersed powder photocatalysis derived from variable dispersion, metallic co-catalyst morphology, and light fluctuations. Journal of Photochemistry and Photobiology, 2020, 2, 100004.	1.1	4
26	Quantitative 3D Characterization of Novel Polymer-nanocrystal Hybrid Catalysts by Electron Tomography. Microscopy and Microanalysis, 2020, 26, 1136-1137.	0.2	0
27	Chemically Controllable Porous Polymer–Nanocrystal Composites with Hierarchical Arrangement Show Substrate Transport Selectivity. Chemistry of Materials, 2020, 32, 5904-5915.	3.2	3
28	Revealing the structure of a catalytic combustion active-site ensemble combining uniform nanocrystal catalysts and theory insights. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14721-14729.	3.3	16
29	Formic acid oxidation boosted by Rh single atoms. Nature Nanotechnology, 2020, 15, 346-347.	15.6	10
30	Enhanced Catalytic Activity for Methane Combustion through <i>in Situ</i> Water Sorption. ACS Catalysis, 2020, 10, 8157-8167.	5.5	55
31	Nanoparticle diffusion during gelation of tetra poly(ethylene glycol) provides insight into nanoscale structural evolution. Soft Matter, 2020, 16, 2256-2265.	1.2	12
32	Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. ACS Sustainable Chemistry and Engineering, 2020, 8, 2672-2681.	3.2	217
33	Determining number of sites on ceria stabilizing single atoms via metal nanoparticle redispersion. Chinese Journal of Catalysis, 2020, 41, 998-1005.	6.9	8
34	A Combined Theoryâ€Experiment Analysis of the Surface Species in Lithiumâ€Mediated NH ₃ Electrosynthesis. ChemElectroChem, 2020, 7, 1513-1513.	1.7	2
35	Reply to: Practical constraints on atmospheric methane removal. Nature Sustainability, 2020, 3, 358-359.	11.5	3
36	Investigation of the optical properties of uniform platinum, palladium, and nickel nanocrystals enables direct measurements of their concentrations in solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125007.	2.3	6

#	Article	IF	CITATIONS
37	Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nature Catalysis, 2019, 2, 748-755.	16.1	171
38	Transition state and product diffusion control by polymer–nanocrystal hybrid catalysts. Nature Catalysis, 2019, 2, 852-863.	16.1	64
39	Strategies toward Selective Electrochemical Ammonia Synthesis. ACS Catalysis, 2019, 9, 8316-8324.	5.5	145
40	Block-Co-polymer-Assisted Synthesis of All Inorganic Highly Porous Heterostructures with Highly Accessible Thermally Stable Functional Centers. ACS Applied Materials & Interfaces, 2019, 11, 30154-30162.	4.0	22
41	Engineering of Ruthenium–Iron Oxide Colloidal Heterostructures: Improved Yields in CO ₂ Hydrogenation to Hydrocarbons. Angewandte Chemie - International Edition, 2019, 58, 17451-17457.	7.2	49
42	Engineering of Ruthenium–Iron Oxide Colloidal Heterostructures: Improved Yields in CO ₂ Hydrogenation to Hydrocarbons. Angewandte Chemie, 2019, 131, 17612-17618.	1.6	7
43	Palladium oxidation leads to methane combustion activity: Effects of particle size and alloying with platinum. Journal of Chemical Physics, 2019, 151, 154703.	1.2	30
44	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570, 504-508.	13.7	1,006
45	A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. ACS Catalysis, 2019, 9, 5797-5802.	5.5	97
46	General Self-Assembly Method for Deposition of Graphene Oxide into Uniform Close-Packed Monolayer Films. Langmuir, 2019, 35, 4460-4470.	1.6	10
47	Modular Pd/Zeolite Composites Demonstrating the Key Role of Support Hydrophobic/Hydrophilic Character in Methane Catalytic Combustion. ACS Catalysis, 2019, 9, 4742-4753.	5.5	97
48	Artificial inflation of apparent photocatalytic activity induced by catalyst-mass-normalization and a method to fairly compare heterojunction systems. Energy and Environmental Science, 2019, 12, 1657-1667.	15.6	23
49	Colloidal nanocrystals for heterogeneous catalysis. Nano Today, 2019, 24, 15-47.	6.2	98
50	Colloidal Nanocrystals as Building Blocks for Well-Defined Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 576-596.	3.2	80
51	Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning. Nano Letters, 2019, 19, 520-529.	4.5	80
52	Synthesis, Characterization, and Light-Induced Spatial Charge Separation in Janus Graphene Oxide. Chemistry of Materials, 2018, 30, 2084-2092.	3.2	15
53	Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering. Chemistry of Materials, 2018, 30, 1127-1135.	3.2	43
54	Formic Acid Dehydrogenation: Phosphides Strike Again. Joule, 2018, 2, 379-380.	11.7	4

#	Article	IF	CITATIONS
55	Low-Temperature Restructuring of CeO ₂ -Supported Ru Nanoparticles Determines Selectivity in CO ₂ Catalytic Reduction. Journal of the American Chemical Society, 2018, 140, 13736-13745.	6.6	210
56	Synthesis of Colloidal Pd/Au Dilute Alloy Nanocrystals and Their Potential for Selective Catalytic Oxidations. Journal of the American Chemical Society, 2018, 140, 12930-12939.	6.6	92
57	<i>In Situ</i> X-ray Scattering Guides the Synthesis of Uniform PtSn Nanocrystals. Nano Letters, 2018, 18, 4053-4057.	4.5	43
58	Understanding the preferential oxidation of carbon monoxide (PrOx) using size ontrolled Au nanocrystal catalyst. AICHE Journal, 2018, 64, 3159-3167.	1.8	20
59	Photocatalytic Hydrogen Evolution from Substoichiometric Colloidal WO _{3–<i>x</i>} Nanowires. ACS Energy Letters, 2018, 3, 1904-1910.	8.8	145
60	Deconvoluting Transient Water Effects on the Activity of Pd Methane Combustion Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 10261-10268.	1.8	40
61	Langmuir–Blodgett Deposition of Graphene Oxide—Identifying Marangoni Flow as a Process that Fundamentally Limits Deposition Control. Langmuir, 2018, 34, 9683-9691.	1.6	18
62	Low-Temperature Methane Partial Oxidation to Syngas with Modular Nanocrystal Catalysts. ACS Applied Nano Materials, 2018, 1, 5258-5267.	2.4	16
63	Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices. Nano Letters, 2017, 17, 1387-1394.	4.5	40
64	Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis. Nano Letters, 2017, 17, 1839-1845.	4.5	50
65	Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability. ACS Catalysis, 2017, 7, 4372-4380.	5.5	124
66	Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catalysis, 2017, 7, 706-709.	5.5	689
67	Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion. ACS Catalysis, 2017, 7, 7810-7821.	5.5	151
68	Mechanistic Understanding and the Rational Design of Sinter-Resistant Heterogeneous Catalysts. ACS Catalysis, 2017, 7, 7156-7173.	5.5	214
69	High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature, 2017, 548, 197-201.	13.7	101
70	Nanorod Mobility Influences Polymer Diffusion in Polymer Nanocomposites. ACS Macro Letters, 2017, 6, 869-874.	2.3	10
71	Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals. Journal of the American Chemical Society, 2017, 139, 11989-11997.	6.6	109
72	Opportunities and Challenges in the Synthesis, Characterization, and Catalytic Properties of Controlled Nanostructures. Studies in Surface Science and Catalysis, 2017, 177, 1-56.	1.5	1

#	Article	IF	CITATIONS
73	Ammonia synthesis from N ₂ and H ₂ O using a lithium cycling electrification strategy at atmospheric pressure. Energy and Environmental Science, 2017, 10, 1621-1630.	15.6	342
74	Engineering uniform nanocrystals: Mechanism of formation and selfâ€assembly into bimetallic nanocrystal superlattices. AICHE Journal, 2016, 62, 392-398.	1.8	20
75	Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nature Communications, 2016, 7, 13549.	5.8	98
76	Elucidating the synergistic mechanism of nickel-molybdenum electrocatalysts for the hydrogen evolution reaction. MRS Communications, 2016, 6, 241-246.	0.8	16
77	Engineering titania nanostructure to tune and improve its photocatalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3966-3971.	3.3	106
78	Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure. Journal of Catalysis, 2016, 337, 240-247.	3.1	36
79	Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals. Journal of the American Chemical Society, 2016, 138, 10508-10515.	6.6	22
80	Shape-dependence of the thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2. Surface Science, 2016, 654, 1-7.	0.8	24
81	Dynamical Observation and Detailed Description of Catalysts under Strong Metal–Support Interaction. Nano Letters, 2016, 16, 4528-4534.	4.5	230
82	In-situ Study of Coarsening Mechanisms of Supported Metal Particles in Reducing Gas. Microscopy and Microanalysis, 2015, 21, 643-644.	0.2	0
83	A comparison of hierarchical Pt@CeO2/Si–Al2O3 and Pd@CeO2/Si–Al2O3. Catalysis Today, 2015, 253, 137-141.	2.2	7
84	Synergistic Oxygen Evolving Activity of a TiO ₂ -Rich Reconstructed SrTiO ₃ (001) Surface. Journal of the American Chemical Society, 2015, 137, 2939-2947.	6.6	58
85	Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy. Nature Communications, 2015, 6, 7778.	5.8	105
86	Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO ₂ thin films. Physical Chemistry Chemical Physics, 2015, 17, 17190-17201.	1.3	24
87	Structure, morphology and catalytic properties of pure and alloyed Au–ZnO hierarchical nanostructures. RSC Advances, 2015, 5, 41920-41922.	1.7	5
88	Efficient Removal of Organic Ligands from Supported Nanocrystals by Fast Thermal Annealing Enables Catalytic Studies on Well-Defined Active Phases. Journal of the American Chemical Society, 2015, 137, 6906-6911.	6.6	208
89	Uniform Bimetallic Nanocrystals by High-Temperature Seed-Mediated Colloidal Synthesis and Their Catalytic Properties for Semiconducting Nanowire Growth. Chemistry of Materials, 2015, 27, 5833-5838.	3.2	27
90	Dendron-Mediated Engineering of Interparticle Separation and Self-Assembly in Dendronized Gold Nanoparticles Superlattices. Journal of the American Chemical Society, 2015, 137, 10728-10734.	6.6	51

#	Article	IF	CITATIONS
91	Fast Nanorod Diffusion through Entangled Polymer Melts. ACS Macro Letters, 2015, 4, 952-956.	2.3	39
92	Substitutional doping in nanocrystal superlattices. Nature, 2015, 524, 450-453.	13.7	174
93	Quantifying "Softness―of Organic Coatings on Gold Nanoparticles Using Correlated Small-Angle X-ray and Neutron Scattering. Nano Letters, 2015, 15, 8008-8012.	4.5	47
94	A Model to Determine the Chemical Expansion in Non-Stoichiometric Oxides Based on the Elastic Force Dipole. Journal of the Electrochemical Society, 2014, 161, F3060-F3064.	1.3	9
95	X-ray Mapping of Nanoparticle Superlattice Thin Films. ACS Nano, 2014, 8, 12843-12850.	7.3	19
96	Tailoring photocatalytic nanostructures for sustainable hydrogen production. Nanoscale, 2014, 6, 97-105.	2.8	30
97	Enhanced Energy Transfer in Quasiâ€Quaternary Nanocrystal Superlattices. Advanced Materials, 2014, 26, 2419-2423.	11.1	26
98	Au@TiO2 Core–Shell Nanostructures with High Thermal Stability. Catalysis Letters, 2014, 144, 1939-1945.	1.4	14
99	Supported platinum–zinc oxide core–shell nanoparticle catalysts for methanol steam reforming. Journal of Materials Chemistry A, 2014, 2, 19509-19514.	5.2	31
100	Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals. Chemical Reviews, 2014, 114, 9319-9345.	23.0	343
101	Methane Oxidation on Pd@ZrO ₂ /Si–Al ₂ O ₃ Is Enhanced by Surface Reduction of ZrO ₂ . ACS Catalysis, 2014, 4, 3902-3909.	5.5	119
102	Synthesis and Stability of Pd@CeO ₂ Core–Shell Catalyst Films in Solid Oxide Fuel Cell Anodes. ACS Catalysis, 2013, 3, 1801-1809.	5.5	96
103	CORE-SHELL-TYPE MATERIALS BASED ON CERIA. Catalytic Science Series, 2013, , 361-396.	0.6	1
104	High-temperature calcination improves the catalytic properties of alumina-supported Pd@ceria prepared by self assembly. Journal of Catalysis, 2013, 306, 109-115.	3.1	33
105	Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts. Science, 2013, 341, 771-773.	6.0	1,142
106	Alcohol induced ultra-fine dispersion of Pt on tuned morphologies of CeO2 for CO oxidation. Applied Catalysis B: Environmental, 2013, 130-131, 121-131.	10.8	49
107	Playing with Structures at the Nanoscale: Designing Catalysts by Manipulation of Clusters and Nanocrystals as Building Blocks. ChemPhysChem, 2013, 14, 3869-3877.	1.0	25
108	Exceptional Thermal Stability of Pd@CeO ₂ Core–Shell Catalyst Nanostructures Grafted onto an Oxide Surface. Nano Letters, 2013, 13, 2252-2257.	4.5	106

#	Article	IF	CITATIONS
109	Heterogeneous Catalysts Need Not Be so "Heterogeneous― Monodisperse Pt Nanocrystals by Combining Shape-Controlled Synthesis and Purification by Colloidal Recrystallization. Journal of the American Chemical Society, 2013, 135, 2741-2747.	6.6	105
110	A Versatile Route to Core–Shell Catalysts: Synthesis of Dispersible M@Oxide (M=Pd, Pt;) Tj ETQq0 0 0 rgBT /O 140-148.	verlock 10 3.6) Tf 50 707 To 74
111	Exceptional Activity for Methane Combustion over Modular Pd@CeO ₂ Subunits on Functionalized Al ₂ O ₃ . Science, 2012, 337, 713-717.	6.0	842
112	Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions. Catalysis Letters, 2012, 142, 1043-1048.	1.4	55
113	Multiwalled Carbon Nanotubes Drive the Activity of Metal@oxide Core–Shell Catalysts in Modular Nanocomposites. Journal of the American Chemical Society, 2012, 134, 11760-11766.	6.6	107
114	Nonaqueous Synthesis of TiO ₂ Nanocrystals Using TiF ₄ to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. Journal of the American Chemical Society, 2012, 134, 6751-6761.	6.6	854
115	Study of the Water-Gas-Shift Reaction on Pd@CeO ₂ /Al ₂ O ₃ Coreâ^'Shell Catalysts. Journal of Physical Chemistry C, 2011, 115, 915-919.	1.5	66
116	A Versatile Approach to the Synthesis of Functionalized Thiol-Protected Palladium Nanoparticles. Chemistry of Materials, 2011, 23, 3961-3969.	3.2	94
117	Photocatalytic H ₂ and Addedâ€Value Byâ€Products – The Role of Metal Oxide Systems in Their Synthesis from Oxygenates. European Journal of Inorganic Chemistry, 2011, 2011, 4309-4323.	1.0	134
118	Highly Active and Thermally Stable Core-Shell Catalysts for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2011, 158, B596.	1.3	48
119	Embedded Phases: A Way to Active and Stable Catalysts. ChemSusChem, 2010, 3, 24-42.	3.6	240
120	Synthesis of Dispersible Pd@CeO ₂ Coreâ^'Shell Nanostructures by Self-Assembly. Journal of the American Chemical Society, 2010, 132, 1402-1409.	6.6	214
121	Active and Stable Embedded Au@CeO ₂ Catalysts for Preferential Oxidation of CO. Chemistry of Materials, 2010, 22, 4335-4345.	3.2	87
122	Novel embedded Pd@CeO ₂ catalysts: a way to active and stable catalysts. Dalton Transactions, 2010, 39, 2122-2127.	1.6	80
123	CuO _{<i>x</i>} â^'TiO ₂ Photocatalysts for H ₂ Production from Ethanol and Glycerol Solutions. Journal of Physical Chemistry A, 2010, 114, 3916-3925.	1.1	239