Isao Ogino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5910375/publications.pdf

Version: 2024-02-01

		471509	434195
55	1,078 citations	17	31
papers	citations	h-index	g-index
59	59	59	1541
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhancing the efficiency of gas-liquid-solid reactions using a monolithic microhoneycomb catalyst. Catalysis Today, 2023, 407, 244-251.	4.4	2
2	Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation. Environmental Pollution, 2021, 279, 116899.	7.5	12
3	Mo–V–O nanocrystals synthesized in the confined space of a mesoporous carbon. Applied Catalysis A: General, 2021, 624, 118294.	4.3	3
4	Genesis of micropores by thermal activation of Mg-Al layered double hydroxides possessing interlayer organic sulfonates under oxygen-free environments. Catalysis Today, 2020, 356, 11-17.	4.4	1
5	Bruce Gates: A Career in Catalysis. ACS Catalysis, 2020, 10, 11912-11935.	11.2	10
6	Intercalation chemistry and thermal characteristics of layered double hydroxides possessing organic phosphonates and sulfonates. New Journal of Chemistry, 2020, 44, 10002-10010.	2.8	1
7	Catalytic Activity for Oxygen Reduction Reaction of Ni-Mn-Fe Layered Double Hydroxide-Carbon Gel Composite. Chemistry Letters, 2019, 48, 696-699.	1.3	4
8	Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH). Adsorption, 2019, 25, 1089-1098.	3.0	6
9	Carbon gel monoliths with introduced straight microchannels for phenol adsorption. Adsorption, 2019, 25, 1241-1249.	3.0	1
10	Cost-effective synthesis of activated carbons with high surface areas for electrodes of non-aqueous electric double layer capacitors. Separation and Purification Technology, 2019, 214, 174-180.	7.9	15
11	Understanding atomically dispersed supported metal catalysts: structure and performance of active sites. Catalysis, 2019, , 166-197.	1.0	1
12	Carbon Paper with a High Surface Area Prepared from Carbon Nanofibers Obtained through the Liquid Pulse Injection Technique. ACS Omega, 2018, 3, 691-697.	3.5	23
13	Esterification of levulinic acid with ethanol catalyzed by sulfonated carbon catalysts: Promotional effects of additional functional groups. Catalysis Today, 2018, 314, 62-69.	4.4	46
14	The critical role of bulk density of graphene oxide in tuning its defect concentration through microwave-driven annealing. Journal of Energy Chemistry, 2018, 27, 1468-1474.	12.9	6
15	The impact of thermal activation conditions on physicochemical properties of nanosheet-derived Mg-Al mixed oxides. Microporous and Mesoporous Materials, 2018, 263, 181-189.	4.4	7
16	Synthesis of Mg–Al Mixed Oxides with Markedly High Surface Areas from Layered Double Hydroxides with Organic Sulfonates. ACS Omega, 2018, 3, 16916-16923.	3.5	14
17	Development of TiO ₂ –SiO ₂ Photocatalysts Having a Microhoneycomb Structure by the Ice Templating Method. ACS Omega, 2018, 3, 14274-14279.	3.5	9
18	Optimization of practical activation depth for effective CO2 activation using PMMA-templated carbons with a tailorable pore system of meso- and macropores. Journal of Porous Materials, 2017, 24, 1497-1506.	2.6	2

#	Article	IF	CITATIONS
19	CO ₂ Separation in a Flow System by Silica Microhoneycombs Loaded with an Ionic Liquid Prepared by the Ice-Templating Method. Industrial & Engineering Chemistry Research, 2017, 56, 2834-2839.	3.7	6
20	X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges. Chinese Journal of Catalysis, 2017, 38, 1481-1488.	14.0	32
21	PMMA-Templated Carbon Gel Monoliths with Independently Tunable Micro-, Meso-, and Macropores. Journal of Chemical Engineering of Japan, 2017, 50, 315-323.	0.6	1
22	Effect of the mesopores of carbon supports on the CO tolerance of Pt 2 Ru 3 polymer electrolyte fuel cell anode catalyst. International Journal of Hydrogen Energy, 2016, 41, 13697-13704.	7.1	17
23	Adsorption of phenol in flow systems by a monolithic carbon cryogel with a microhoneycomb structure. Adsorption, 2016, 22, 1051-1058.	3.0	14
24	New method for introducing mesopores into carbon microhoneycombs using dextran. Microporous and Mesoporous Materials, 2016, 231, 171-177.	4.4	3
25	Tuning the Pore Structure and Surface Properties of Carbon-Based Acid Catalysts for Liquid-Phase Reactions. ACS Catalysis, 2015, 5, 4951-4958.	11.2	70
26	Carbon Nanotube Synthesis via the Calciothermic Reduction of Carbon Dioxide with Iron Additives. ECS Solid State Letters, 2015, 4, M19-M22.	1.4	6
27	Genesis of Delaminated-Zeolite Morphology: 3-D Characterization of Changes by STEM Tomography. Journal of Physical Chemistry Letters, 2015, 6, 2598-2602.	4.6	5
28	Sonication-Free Exfoliation of Graphite Oxide via Rapid Phase Change of Water. Topics in Catalysis, 2015, 58, 522-528.	2.8	9
29	Flexible film-type catalysts encapsulating urease within κ-carrageenan hydrogel network. Chemical Engineering Journal, 2015, 278, 122-128.	12.7	7
30	Binderfree synthesis of high-surface-area carbon electrodes via CO2 activation of resorcinol–formaldehyde carbon xerogel disks: Analysis of activation process. Carbon, 2014, 76, 240-249.	10.3	36
31	Exfoliation of Graphite Oxide in Water without Sonication: Bridging Length Scales from Nanosheets to Macroscopic Materials. Chemistry of Materials, 2014, 26, 3334-3339.	6.7	74
32	Zeolite-supported Molecular Metal Complex Catalysts. RSC Catalysis Series, 2014, , 27-54.	0.1	0
33	Effect of Activation Degree of Resorcinol–Formaldehyde Carbon Gels on Carbon monoxide Tolerance of Platinum–Ruthenium Polymer Electrolyte Fuel Cell Anode Catalyst. Journal of Physical Chemistry C, 2014, 118, 23003-23010.	3.1	7
34	Marked Increase in Hydrophobicity of Monolithic Carbon Cryogels via HCl Aging of Precursor Resorcinol–Formaldehyde Hydrogels: Application to 1-Butanol Recovery from Dilute Aqueous Solutions. Journal of Physical Chemistry C, 2014, 118, 6866-6872.	3.1	19
35	Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability. Advanced Powder Technology, 2013, 24, 520-524.	4.1	20
36	Synthesis of Sulfonic Acid Functionalized Silica Honeycombs. Industrial & Engineering Chemistry Research, 2013, 52, 15293-15297.	3.7	7

#	Article	IF	CITATIONS
37	Heteroatom-Tolerant Delamination of Layered Zeolite Precursor Materials. Chemistry of Materials, 2013, 25, 1502-1509.	6.7	51
38	Synthesis of a Monolithic Carbon-Based Acid Catalyst with a Honeycomb Structure for Flow Reaction Systems. Industrial & Engineering Chemistry Research, 2013, 52, 15372-15376.	3.7	21
39	Analysis of the Growth Behavior of Carbon Nanofibers Synthesized Using the Liquid Pulse Injection Technique. Industrial & Engineering Chemistry Research, 2013, 52, 15281-15286.	3.7	6
40	Immobilization of magnesium ammonium phosphate crystals within microchannels for efficient ammonia removal. Water Science and Technology, 2013, 67, 359-365.	2.5	5
41	Synthesis of a Microhoneycomb-Type Silica-Supported Ammonium Molybdophosphate for Cesium Separation. Journal of Chemical Engineering of Japan, 2013, 46, 616-619.	0.6	12
42	Nonaqueous Fluoride/Chloride Anion-Promoted Delamination of Layered Zeolite Precursors: Synthesis and Characterization of UCB-2. Chemistry of Materials, 2011, 23, 5404-5408.	6.7	37
43	Delamination of Layered Zeolite Precursors under Mild Conditions: Synthesis of UCB-1 via Fluoride/Chloride Anion-Promoted Exfoliation. Journal of the American Chemical Society, 2011, 133, 3288-3291.	13.7	98
44	A Zeoliteâ€Supported Molecular Ruthenium Complex with Î- ⁶ â€C ₆ H ₆ Ligands: Chemistry Elucidated by Using Spectroscopy and Density Functional Theory. Chemistry - A European Journal, 2010, 16, 7427-7436.	3.3	7
45	A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chemistry, 2010, 2, 1062-1068.	13.6	103
46	Zeolite-supported metal complexes of rhodium and of ruthenium: a general synthesis method influenced by molecular sieving effects. Dalton Transactions, 2010, 39, 8423.	3.3	26
47	Essentially Molecular Metal Complexes Anchored to Zeolite β: Synthesis and Characterization of Rhodium Complexes and Ruthenium Complexes Prepared from Rh(acac)(η ² -C ₂ H ₄) ₂ and <i>cis</i> -Ru(acac) ₂) ₂) Journal of Physical Chemistry C, 2010, 114, 2685-2693.	^{2<td>sup>-C</td>}	sup>-C
48	Reactions of Highly Uniform Zeolite H- \hat{l}^2 -Supported Rhodium Complexes: Transient Characterization by Infrared and X-ray Absorption Spectroscopies. Journal of Physical Chemistry C, 2010, 114, 8405-8413.	3.1	12
49	Role of the Support in Catalysis: Activation of a Mononuclear Ruthenium Complex for Ethene Dimerization by Chemisorption on Dealuminated Zeoliteâ€Y. Chemistry - A European Journal, 2009, 15, 6827-6837.	3.3	18
50	Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y. Journal of Physical Chemistry C, 2009, 113, 20036-20043.	3.1	8
51	Molecular Chemistry in a Zeolite: Genesis of a Zeolite Y-Supported Ruthenium Complex Catalyst. Journal of the American Chemical Society, 2008, 130, 13338-13346.	13.7	37
52	Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. Journal of Physical Chemistry B, 2006, 110, 5273-5278.	2.6	26
53	The fluoride-based route to all-silica molecular sieves; a strategy for synthesis of new materials based upon close-packing of guest–host products. Comptes Rendus Chimie, 2005, 8, 267-282.	0.5	94
54	The Fluoride-Based Route to All-Silica Molecular Sieves; a Strategy for Synthesis of New Materials Based Upon Close-Packing of Guest—Host Products. ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
55	Molecular sieve synthesis using alkylated sparteine derivatives as structure-directing agents. Microporous and Mesoporous Materials, 2004, 67, 67-78.	4.4	8