Kelli L Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5910034/publications.pdf

Version: 2024-02-01

		331259	329751
36	2,224	21	37
papers	citations	h-index	g-index
59	59	59	2656
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multidrug-Resistant Enterococci Lack CRISPR- <i>cas</i>). MBio, 2010, 1, .	1.8	362
2	Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of <i>E</i> . <i>gallinarum</i> and <i>E</i> . <i>casseliflavus</i> . MBio, 2012, 3, e00318-11.	1.8	259
3	Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Current Opinion in Microbiology, 2010, 13, 632-639.	2.3	247
4	Genetic Basis for Daptomycin Resistance in Enterococci. Antimicrobial Agents and Chemotherapy, 2011, 55, 3345-3356.	1.4	165
5	CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis. MSphere, 2016, 1 , .	1.3	95
6	Reduced Chlorhexidine and Daptomycin Susceptibility in Vancomycin-Resistant Enterococcus faecium after Serial Chlorhexidine Exposure. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	95
7	High-Quality Draft Genome Sequences of 28 <i>Enterococcus</i> sp. Isolates. Journal of Bacteriology, 2010, 192, 2469-2470.	1.0	80
8	Molecular Basis for Lytic Bacteriophage Resistance in Enterococci. MBio, 2016, 7, .	1.8	80
9	Bacteriophage Resistance Alters Antibiotic-Mediated Intestinal Expansion of Enterococci. Infection and Immunity, 2019, 87, .	1.0	79
10	Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	76
11	Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci. Antimicrobial Agents and Chemotherapy, 2016, 60, 2209-2221.	1.4	69
12	Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions. MBio, 2020, 11, .	1.8	57
13	Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine. MSphere, 2019, 4, .	1.3	46
14	Loss-of-Function Mutations in <i>epaR</i> Confer Resistance to \ddot{i} -NPV1 Infection in Enterococcus faecalis OG1RF. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	45
15	Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. ELife, 2017, 6, .	2.8	43
16	An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition. MBio, 2018, 9, .	1.8	39
17	Constitutive expression of the cryptic vanGCd operon promotes vancomycin resistance in Clostridioides difficile clinical isolates. Journal of Antimicrobial Chemotherapy, 2020, 75, 859-867.	1.3	39
18	Genome Modification in Enterococcus faecalis OG1RF Assessed by Bisulfite Sequencing and Single-Molecule Real-Time Sequencing. Journal of Bacteriology, 2015, 197, 1939-1951.	1.0	34

#	Article	IF	CITATIONS
19	Streptococcus mitis and S. oralis Lack a Requirement for CdsA, the Enzyme Required for Synthesis of Major Membrane Phospholipids in Bacteria. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	34
20	Comparative Analysis of the Orphan CRISPR2 Locus in 242 Enterococcus faecalis Strains. PLoS ONE, 2015, 10, e0138890.	1.1	30
21	Phosphatidylcholine Biosynthesis in Mitis Group Streptococci via Host Metabolite Scavenging. Journal of Bacteriology, 2019, 201, .	1.0	26
22	Chromosomal Resistance to Metronidazole in Clostridioides difficile Can Be Mediated by Epistasis between Iron Homeostasis and Oxidoreductases. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	26
23	Modulators of Enterococcus faecalis Cell Envelope Integrity and Antimicrobial Resistance Influence Stable Colonization of the Mammalian Gastrointestinal Tract. Infection and Immunity, 2018, 86, .	1.0	25
24	CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathogens, 2021, 17, e1009672.	2.1	24
25	Mutations Associated with Reduced Surotomycin Susceptibility in Clostridium difficile and Enterococcus Species. Antimicrobial Agents and Chemotherapy, 2015, 59, 4139-4147.	1.4	21
26	The Integrity of Heme Is Essential for Reproducible Detection of Metronidazole-Resistant Clostridioides difficile by Agar Dilution Susceptibility Tests. Journal of Clinical Microbiology, 2021, 59, e0058521.	1.8	19
27	A Type I Restriction-Modification System Associated with Enterococcus faecium Subspecies Separation. Applied and Environmental Microbiology, 2019, 85, .	1.4	17
28	Streptococcus pneumoniae, S. pyogenes and S. agalactiae membrane phospholipid remodelling in response to human serum. Microbiology (United Kingdom), 2021, 167, .	0.7	10
29	Streptococcus pneumoniae, S. mitis, and S. oralis Produce a Phosphatidylglycerol-Dependent, <i>ltaS</i> -Independent Glycerophosphate-Linked Glycolipid. MSphere, 2021, 6, .	1.3	9
30	In Vitro and In Vivo Models of Staphylococcus aureus Endophthalmitis Implicate Specific Nutrients in Ocular Infection. PLoS ONE, 2014, 9, e110872.	1.1	8
31	EfrEF and the Transcription Regulator ChlR Are Required for Chlorhexidine Stress Response in Enterococcus faecalis V583. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	7
32	Identification of a novel cationic glycolipid in Streptococcus agalactiae that contributes to brain entry and meningitis. PLoS Biology, 2022, 20, e3001555.	2.6	7
33	Characterization of presumptive vancomycin-resistant enterococci recovered during infection control surveillance in Dallas, Texas, USA. Access Microbiology, 2021, 3, 000214.	0.2	5
34	ddcP, pstB, and excess D-lactate impact synergism between vancomycin and chlorhexidine against Enterococcus faecium 1,231,410. PLoS ONE, 2021, 16, e0249631.	1.1	5
35	Pronounced heterogeneity observed in high-level daptomycin-resistant viridans group streptococci. Journal of Global Antimicrobial Resistance, 2016, 7, 159-166.	0.9	3
36	Genetically distant bacteriophages select for unique genomic changes in <i>Enterococcus faecalis</i> . MicrobiologyOpen, 2022, 11, e1273.	1.2	2