List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909707/publications.pdf Version: 2024-02-01

	53660	60497
7,449	45	81
citations	h-index	g-index
105	105	10001
135	135	10381
docs citations	times ranked	citing authors
	citations 135	7,44945citationsh-index135135

DONCYLIE HAN

#	Article	IF	CITATIONS
1	Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. Journal of Materials Chemistry, 2009, 19, 4632.	6.7	711
2	Convenient Recycling of 3D AgX/Graphene Aerogels (X = Br, Cl) for Efficient Photocatalytic Degradation of Water Pollutants. Advanced Materials, 2015, 27, 3767-3773.	11.1	344
3	Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosanâ€Graphene Modified Electrode. Electroanalysis, 2010, 22, 2001-2008.	1.5	329
4	Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance. Applied Catalysis B: Environmental, 2015, 170-171, 206-214.	10.8	325
5	Intercorrelated Superhybrid of AgBr Supported on Graphiticâ€C ₃ N ₄ â€Decorated Nitrogenâ€Doped Graphene: High Engineering Photocatalytic Activities for Water Purification and CO ₂ Reduction. Advanced Materials, 2015, 27, 6906-6913.	11.1	298
6	Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. Journal of Materials Chemistry, 2009, 19, 8856.	6.7	176
7	Growth Control of MoS ₂ Nanosheets on Carbon Cloth for Maximum Active Edges Exposed: An Excellent Hydrogen Evolution 3D Cathode. ACS Applied Materials & Interfaces, 2015, 7, 12193-12202.	4.0	176
8	In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 7790-7799.	4.0	167
9	Regioregular Narrowâ€Bandgap nâ€Type Polymers with High Electron Mobility Enabling Highly Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2021, 33, e2102635.	11.1	151
10	The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry, 2009, 19, 4022.	6.7	143
11	Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nature Sustainability, 2021, 4, 509-515.	11.5	135
12	Ultrathin g-C ₃ N ₄ /TiO ₂ composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chemical Science, 2014, 5, 3946-3951.	3.7	133
13	Hierarchical Nickel–Cobaltâ€Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals. ChemSusChem, 2018, 11, 2547-2553.	3.6	130
14	NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Applied Catalysis B: Environmental, 2020, 261, 118235.	10.8	130
15	Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosensors and Bioelectronics, 2019, 124-125, 191-198.	5.3	121
16	Nanoengineering Construction of Cu ₂ O Nanowire Arrays Encapsulated with g-C ₃ N ₄ as 3D Spatial Reticulation All-Solid-State Direct Z-Scheme Photocatalysts for Photocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 2020, 10, 6367-6376.	5.5	108
17	Hollow flower-like AuPd alloy nanoparticles: One step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid. Journal of Materials Chemistry, 2011, 21, 17922.	6.7	104
18	Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy and Environmental Science, 0, , .	15.6	102

DONGXUE HAN

#	Article	IF	CITATIONS
19	Graphene Oxideâ€Templated Polyaniline Microsheets toward Simultaneous Electrochemical Determination of AA/DA/UA. Electroanalysis, 2011, 23, 878-884.	1.5	100
20	MoS ₂ /ZnO-Heterostructures-Based Label-Free, Visible-Light-Excited Photoelectrochemical Sensor for Sensitive and Selective Determination of Synthetic Antioxidant Propyl Gallate. Analytical Chemistry, 2019, 91, 10657-10662.	3.2	97
21	High-yield fabrication of Ti ₃ C ₂ T _x MXene quantum dots and their electrochemiluminescence behavior. Nanoscale, 2018, 10, 14000-14004.	2.8	93
22	Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl:Ag hollow nanocrystals. Applied Catalysis B: Environmental, 2015, 164, 344-351.	10.8	89
23	Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage. Journal of Materials Chemistry, 2012, 22, 3404.	6.7	88
24	Co3O4 nanostructures on flexible carbon cloth for crystal plane effect of nonenzymatic electrocatalysis for glucose. Biosensors and Bioelectronics, 2019, 123, 25-29.	5.3	84
25	A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive active activities. Journal of Materials Chemistry A, 2014, 2, 5280-5286.	5.2	78
26	Compactly Coupled Nitrogenâ€Doped Carbon Nanosheets/Molybdenum Phosphide Nanocrystal Hollow Nanospheres as Polysulfide Reservoirs for Highâ€Performance Lithium–Sulfur Chemistry. Small, 2019, 15, e1902491.	5.2	74
27	Construction of Bimetallic Selenides Encapsulated in Nitrogen/Sulfur Coâ€Doped Hollow Carbon Nanospheres for Highâ€Performance Sodium/Potassiumâ€Ion Half/Full Batteries. Small, 2020, 16, e1907670.	5.2	74
28	Bioinspired Microstructured Pressure Sensor Based on a Janus Graphene Film for Monitoring Vital Signs and Cardiovascular Assessment. Advanced Electronic Materials, 2018, 4, 1800252.	2.6	71
29	Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide <i>via</i> photocatalysis. Journal of Materials Chemistry A, 2020, 8, 13277-13284.	5.2	71
30	Engineered Photoelectrochemical Platform for Rational Global Antioxidant Capacity Evaluation Based on Ultrasensitive Sulfonated Graphene–TiO ₂ Nanohybrid. Analytical Chemistry, 2014, 86, 10171-10178.	3.2	69
31	FRET Modulated Signaling: A Versatile Strategy to Construct Photoelectrochemical Microsensors for In Vivo Analysis. Angewandte Chemie - International Edition, 2021, 60, 11774-11778.	7.2	68
32	Biomolecule-Free, Selective Detection of o-Diphenol and Its Derivatives with WS ₂ /TiO ₂ -Based Photoelectrochemical Platform. Analytical Chemistry, 2015, 87, 4844-4850.	3.2	67
33	Recent advances in potassium-ion hybrid capacitors: Electrode materials, storage mechanisms and performance evaluation. Energy Storage Materials, 2021, 41, 108-132.	9.5	66
34	Research Progress on Nitrite Electrochemical Sensor. Chinese Journal of Analytical Chemistry, 2018, 46, 147-155.	0.9	63
35	A carbon-based photocatalyst efficiently converts CO2 to CH4 and C2H2 under visible light. Green Chemistry, 2014, 16, 2142-2146.	4.6	61
36	Skin-Inspired Hair–Epidermis–Dermis Hierarchical Structures for Electronic Skin Sensors with High Sensitivity over a Wide Linear Range. ACS Nano, 2021, 15, 16218-16227.	7.3	61

#	Article	IF	CITATIONS
37	Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization. Journal of Materials Chemistry, 2006, 16, 4592.	6.7	60
38	Electrochemically Driven Surface-Confined Acid/Base Reaction for an Ultrafast H ⁺ Supercapacitor. Journal of the American Chemical Society, 2016, 138, 1490-1493.	6.6	60
39	Breathable and Skin-Mountable Strain Sensor with Tunable Stretchability, Sensitivity, and Linearity via Surface Strain Delocalization for Versatile Skin Activities' Recognition. ACS Applied Materials & Interfaces, 2018, 10, 42826-42836.	4.0	60
40	A new route to tailor high mass loading all-solid-state supercapacitor with ultra-high volumetric energy density. Carbon, 2018, 136, 46-53.	5.4	57
41	CdS/TiO ₂ Nanocomposite-Based Photoelectrochemical Sensor for a Sensitive Determination of Nitrite in Principle of Etching Reaction. Analytical Chemistry, 2021, 93, 820-827.	3.2	57
42	Structure and electronic properties of C ₂ N/graphene predicted by first-principles calculations. RSC Advances, 2016, 6, 28484-28488.	1.7	56
43	First-principles study of the role of strain and hydrogenation on C3N. Carbon, 2018, 134, 22-28.	5.4	54
44	Flexible solid state lithium batteries based on graphene inks. Journal of Materials Chemistry, 2011, 21, 9762.	6.7	52
45	Grafting Benzenediazonium Tetrafluoroborate onto LiNi <i>_x</i> Co <i>_y</i> Mn <i>_z</i> O ₂ Materials Achieves Subzeroâ€Temperature Highâ€Capacity Lithiumâ€Ion Storage via a Diazonium Softâ€Chemistry Method Advanced Energy Materials, 2019, 9, 1802946.	.10.2	50
46	Aggregation-induced delayed fluorescence luminogens: the innovation of purely organic emitters for aqueous electrochemiluminescence. Chemical Science, 2021, 12, 13283-13291.	3.7	47
47	Oxidized titanium carbide MXene-enabled photoelectrochemical sensor for quantifying synergistic interaction of ascorbic acid based antioxidants system. Biosensors and Bioelectronics, 2021, 177, 112978.	5.3	46
48	High performance Pd nanocrystals supported on SnO ₂ -decorated graphene for aromatic nitro compound reduction. Journal of Materials Chemistry A, 2014, 2, 3461-3467.	5.2	45
49	Photoelectrochemical device based on Mo-doped BiVO4 enables smart analysis of the global antioxidant capacity in food. Chemical Science, 2015, 6, 6632-6638.	3.7	45
50	A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Mikrochimica Acta, 2019, 186, 267.	2.5	42
51	Controlled/"living―radical polymerization-based signal amplification strategies for biosensing. Journal of Materials Chemistry B, 2020, 8, 3327-3340.	2.9	42
52	Electrochemically Controlled ATRP for Cleavage-Based Electrochemical Detection of the Prostate-Specific Antigen at Femtomolar Level Concentrations. Analytical Chemistry, 2020, 92, 15982-15988.	3.2	40
53	Electrochemically Controlled RAFT Polymerization for Highly Sensitive Electrochemical Biosensing of Protein Kinase Activity. Analytical Chemistry, 2019, 91, 1936-1943.	3.2	39
54	Superhydrophobic Functionalized Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Skin-Attachable and Wearable Electrochemical pH Sensor for Real-Time Sweat Detection. Analytical Chemistry, 2022, 94, 7319-7328.	3.2	39

#	Article	IF	CITATIONS
55	The fluorescence detection of glutathione by â^™OH radicals' elimination with catalyst of MoS2/rGO under full spectrum visible light irradiation. Talanta, 2015, 144, 551-558.	2.9	38
56	Aerobic oxidation of methane to formaldehyde mediated by crystal-O over gold modified tungsten trioxide via photocatalysis. Applied Catalysis B: Environmental, 2021, 283, 119661.	10.8	38
57	A new strategy for integrating superior mechanical performance and high volumetric energy density into a Janus graphene film for wearable solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 20797-20807.	5.2	37
58	pH-switched luminescence and sensing properties of a carbon dot–polyaniline composite. RSC Advances, 2013, 3, 5475.	1.7	36
59	Tailoring heterostructured Bi2MoO6/Bi2S3 nanobelts for highly selective photoelectrochemical analysis of gallic acid at drug level. Biosensors and Bioelectronics, 2017, 94, 107-114.	5.3	35
60	Surface-Initiated-Reversible-Addition–Fragmentation-Chain-Transfer Polymerization for Electrochemical DNA Biosensing. Analytical Chemistry, 2018, 90, 12207-12213.	3.2	34
61	Ag supported Z-scheme WO2.9/g-C3N4 composite photocatalyst for photocatalytic degradation under visible light. Applied Surface Science, 2020, 501, 144258.	3.1	33
62	Amplified Electrochemical Biosensing of Thrombin Activity by RAFT Polymerization. Analytical Chemistry, 2020, 92, 3470-3476.	3.2	33
63	Functionalized Graphene Oxide Bridging between Enzyme and Au-Sputtered Screen-Printed Interface for Glucose Detection. ACS Applied Nano Materials, 2019, 2, 1589-1596.	2.4	32
64	A portable micro glucose sensor based on copper-based nanocomposite structure. New Journal of Chemistry, 2019, 43, 7806-7813.	1.4	32
65	Electrochemical DNA Biosensing via Electrochemically Controlled Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Sensors, 2019, 4, 235-241.	4.0	32
66	A novel solution-phase route for the synthesis of crystalline silver nanowires. Materials Research Bulletin, 2005, 40, 1796-1801.	2.7	31
67	Oxygen Containing Functional Groups Dominate the Electrochemiluminescence of Pristine Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 27546-27554.	1.5	31
68	Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries. Journal of Physics and Chemistry of Solids, 2020, 139, 109301.	1.9	31
69	Ce-/S-codoped TiO ₂ /Sulfonated graphene for photocatalytic degradation of organic dyes. Journal of Materials Chemistry A, 2014, 2, 13565-13570.	5.2	30
70	High-strength and pH-responsive self-healing polyvinyl alcohol/poly 6-acrylamidohexanoic acid hydrogel based on dual physically cross-linked network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571, 64-71.	2.3	30
71	Grapheneâ€Based Nanohybrids for Advanced Electrochemical Sensing. Electroanalysis, 2015, 27, 2098-2115.	1.5	28
72	Ternary alloyed AgClxBr1â^'x nanocrystals: facile modulation of electronic structures toward advanced photocatalytic performance. Nanoscale, 2013, 5, 10989	2.8	27

#	Article	IF	CITATIONS
73	Perylene derivative-bridged Au–graphene nanohybrid for label-free HpDNA biosensor. Journal of Materials Chemistry B, 2014, 2, 3142-3148.	2.9	27
74	Sub-stoichiometric WO _{2.9} for formaldehyde sensing and treatment: a first-principles study. Journal of Materials Chemistry A, 2016, 4, 14416-14422.	5.2	27
75	Regulations of silver halide nanostructure and composites on photocatalysis. Advanced Composites and Hybrid Materials, 2018, 1, 269-299.	9.9	27
76	Mesoporous N-doped carbon-coated CoSe nanocrystals encapsulated in S-doped carbon nanosheets as advanced anode with ultrathin solid electrolyte interphase for high-performance sodium-ion half/full batteries. Journal of Materials Chemistry A, 2022, 10, 2113-2121.	5.2	27
77	Molecularly imprinted photo-electrochemical sensor for hemoglobin detection based on titanium dioxide nanotube arrays loaded with CdS quantum dots. Talanta, 2021, 224, 121924.	2.9	25
78	Carbon Nitride Quantum Dots Enhancing the Anodic Electrochemiluminescence of Ruthenium(II) Tris(2,2′-bipyridyl) via Inhibiting the Oxygen Evolution Reaction. Analytical Chemistry, 2020, 92, 15352-15360.	3.2	24
79	Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries. Journal of Materials Chemistry A, 2021, 9, 25094-25103.	5.2	24
80	A Practical Li-Ion Full Cell with a High-Capacity Cathode and Electrochemically Exfoliated Graphene Anode: Superior Electrochemical and Low-Temperature Performance. ACS Applied Energy Materials, 2019, 2, 486-492.	2.5	23
81	Untraditional Deformationâ€Driven Pressure Sensor with High Sensitivity and Ultra‣arge Sensing Range up to MPa Enables Versatile Applications. Advanced Materials Technologies, 2020, 5, 2000677.	3.0	23
82	Nanostructured Lateral Boryl Substitution Conjugated Donor–Acceptor Oligomers for Visibleâ€Lightâ€Driven Hydrogen Production. Small, 2021, 17, e2100132.	5.2	23
83	Probing Bio–Nano Interactions between Blood Proteins and Monolayerâ€Stabilized Graphene Sheets. Small, 2015, 11, 5814-5825.	5.2	22
84	Highly selective conversion of CO ₂ to C ₂ H ₆ on graphene modified chlorophyll Cu through multi-electron process for artificial photosynthesis. Nanoscale, 2019, 11, 22980-22988.	2.8	22
85	Electrochemically controlled grafting of polymers for ultrasensitive electrochemical assay of trypsin activity. Biosensors and Bioelectronics, 2020, 165, 112358.	5.3	21
86	Palladium-modified cuprous(<scp>i</scp>) oxide with {100} facets for photocatalytic CO ₂ reduction. Nanoscale, 2021, 13, 2883-2890.	2.8	21
87	First-principles study on OH-functionalized 2D electrides: Ca2NOH and Y2C(OH)2, promising two-dimensional monolayers for metal-ion batteries. Applied Surface Science, 2019, 478, 459-464.	3.1	20
88	Space-Confined Graphene Films for Pressure-Sensing Applications. ACS Applied Nano Materials, 2020, 3, 1731-1740.	2.4	20
89	Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization. Talanta, 2020, 206, 120173.	2.9	19
90	Enhanced photocatalytic degradation of tetracycline by constructing a controllable Cu ₂ O–TiO ₂ heterojunction with specific crystal facets. Catalysis Science and Technology, 2021, 11, 6248-6256.	2.1	19

#	Article	IF	CITATIONS
91	Enhanced photocatalytic CO ₂ reduction by constructing an In ₂ O ₃ –CuO heterojunction with CuO as a cocatalyst. Catalysis Science and Technology, 2021, 11, 2713-2717.	2.1	18
92	Nanoencapsulation strategy: enabling electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters in aqueous media. Chemical Communications, 2021, 57, 5262-5265.	2.2	18
93	Improved performances of a LiNi _{0.6} Co _{0.15} Mn _{0.25} O ₂ cathode material with full concentration-gradient for lithium ion batteries. RSC Advances, 2016, 6, 103747-103753.	1.7	17
94	Unraveling the Impact of Electrochemically Created Oxygen Vacancies on the Performance of ZnO Nanowire Photoanodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 18165-18173.	3.2	17
95	Controllable synthesis of coloured Ag ⁰ /AgCl with spectral analysis for photocatalysis. RSC Advances, 2018, 8, 24812-24818.	1.7	16
96	2D Nitrogenâ€Containing Carbon Material C ₅ N as Potential Host Material for Lithium Polysulfides: A Firstâ€Principles Study. Advanced Theory and Simulations, 2019, 2, 1800165.	1.3	16
97	Novel strategy of natural antioxidant nutrition quality evaluation in food: Oxidation resistance mechanism and synergistic effects investigation. Food Chemistry, 2021, 359, 129768.	4.2	16
98	Bismuth Nanoparticles Encapsulated in Nitrogenâ€Rich Porous Carbon Nanofibers as a Highâ€Performance Anode for Aqueous Alkaline Rechargeable Batteries. Small, 2022, 18, e2105770.	5.2	16
99	Integrated hydrogen evolution and water-cleaning via a robust graphene supported noble-metal-free Fe _{1â^'x} Co _x S ₂ system. Nanoscale, 2017, 9, 5887-5895.	2.8	15
100	Titanium Oxideâ€Confined Manganese Oxide for Oneâ€Step Electrocatalytic Preparation of 2,5â€Furandicarboxylic Acid in Acidic Media. ChemElectroChem, 2020, 7, 4251-4258.	1.7	14
101	Lipids Promote Glycated Phospholipid Formation by Inducing Hydroxyl Radicals in a Maillard Reaction Model System. Journal of Agricultural and Food Chemistry, 2019, 67, 7961-7967.	2.4	12
102	Polydopamine-based molecularly imprinted electrochemical sensor for the highly selective determination of ecstasy components. Analyst, The, 2022, 147, 3291-3297.	1.7	12
103	Design of two electrode system for detection of antioxidant capacity with photoelectrochemical platform. Biosensors and Bioelectronics, 2016, 75, 458-464.	5.3	11
104	Highly selective oxidation of methane to formaldehyde on tungsten trioxide by lattice oxygen. Catalysis Communications, 2021, 161, 106365.	1.6	11
105	Flowerlike submicrometer gold particles: Size- and surface roughness-controlled synthesis and electrochemical characterization. Journal of Materials Research, 2010, 25, 1755-1760.	1.2	10
106	A Novel Method to Prepare Flexible 3D NiO Nanosheets Electrodes for Alkaline Rechargeable Niâ^'Zn Batteries. ChemElectroChem, 2021, 8, 2214-2220.	1.7	10
107	Direct Z-scheme FeV2O4/g-C3N4 binary catalyst for highly selective reduction of carbon dioxide. Chemical Engineering Journal, 2022, 436, 132051.	6.6	10
108	Unprecedented Dual Role of Polyaniline for Enhanced Pseudocapacitance of Cobalt–Iron Layered Double Hydroxide. Macromolecular Rapid Communications, 2022, 43, e2100905.	2.0	10

#	Article	IF	CITATIONS
109	Ion-Imprinted Polymer-Based Receptors for Sensitive and Selective Detection of Mercury Ions in Aqueous Environment. Journal of Sensors, 2018, 2018, 1-6.	0.6	9
110	Stable Ti ³⁺ Sites Derived from the Ti _{<i>x</i>} O _{<i>y</i>} -P _{<i>z</i>} Layer Boost Cubic Fe ₂ O ₃ for Enhanced Photocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 15331-15343.	3.2	9
111	Nanoparticles: Intercorrelated Superhybrid of AgBr Supported on Graphiticâ€C ₃ N ₄ â€Decorated Nitrogenâ€Doped Graphene: High Engineering Photocatalytic Activities for Water Purification and CO ₂ Reduction (Adv. Mater. 43/2015). Advanced Materials. 2015. 27. 7011-7011.	11.1	8
112	A low-cost and green-solvent-processable hole-transport material enabled by a traditional bidentate ligand for highly efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 8930-8938.	2.7	8
113	A self-protective piezoelectric-piezoresistive dual-mode device with superior dynamic-static mechanoresponse and energy harvesting performance enabled by flextensional transduction. Nano Energy, 2022, 100, 107498.	8.2	8
114	Ti ₃ BN monolayer: the MXene-like material predicted by first-principles calculations. RSC Advances, 2017, 7, 11834-11839.	1.7	7
115	Nitrogen-Doped Porous Carbon Derived from Zeolitic Imidazolate Framework-67 Strung into Necklace with Carbon Nanotubes for the Detection of Calcium at Ultralow Level. Journal of the Electrochemical Society, 2020, 167, 087512.	1.3	7
116	Significant enhancement in the electrochemical determination of 4-aminophenol from nanoporous gold by decorating with a Pd@CeO ₂ composite film. New Journal of Chemistry, 2020, 44, 3087-3096.	1.4	7
117	FRET Modulated Signaling: A Versatile Strategy to Construct Photoelectrochemical Microsensors for In Vivo Analysis. Angewandte Chemie, 2021, 133, 11880-11884.	1.6	6
118	Inhibition mechanism of melanin formation based on antioxidant scavenging of reactive oxygen species. Analyst, The, 2022, 147, 2703-2711.	1.7	6
119	Effects of methyl celluloseâ€based coating on physiochemical properties and chemical hazards of Chinese fried dough cake during storage. International Journal of Food Science and Technology, 2021, 56, 4770-4779.	1.3	5
120	3D Tungsten Trioxide Nanosheets as Optoelectronic Materials for On-chip Quantification of Global Antioxidant Capacity. Chemical Research in Chinese Universities, 2021, 37, 763-771.	1.3	5
121	A Label-free Photoelectrochemical Sensor Based on Bi2S3@Nitrogen Doped Graphene Quantum Dots for Ascorbic Acid Determination. Chemical Research in Chinese Universities, 2022, 38, 1387-1393.	1.3	5
122	A theoretical study of formaldehyde adsorption and decomposition on a WC (0001) surface. RSC Advances, 2018, 8, 32481-32489.	1.7	4
123	Sesame oil inhibits the formation of glycidyl ester during deodorization. International Journal of Food Properties, 2021, 24, 505-516.	1.3	4
124	Self-Healing of a Covalently Cross-Linked Polymer Electrolyte Membrane by Diels-Alder Cycloaddition and Electrolyte Embedding for Lithium Ion Batteries. Polymers, 2021, 13, 4155.	2.0	4
125	A simple preparation method of <i>in situ</i> oxidized titanium carbide MXene for photocatalytic degradation of catechol. New Journal of Chemistry, 2022, 46, 9364-9371.	1.4	4
126	Inhibition Mechanism of Catechin, Resveratrol, Butylated Hydroxylanisole, and Tertâ€Butylhydroquinone on Carboxymethyl 1,2â€Dipalmitoylâ€snâ€Glyceroâ€3â€Phosphatidylethanolamine Formation. Journal of Food Science, 2019, 84, 2042-2049.	1.5	3

#	Article	IF	CITATIONS
127	The inhibitory effects of sesamol and sesamolin on the glycidyl esters formation during deodorization of vegetables oils. Journal of the Science of Food and Agriculture, 2021, 101, 3605-3612.	1.7	3
128	Syntheses, formation mechanisms and structures of a series of linear diborazanes. CrystEngComm, 2021, 23, 404-410.	1.3	2
129	Surface State Passivation Ignited Photoelectrochemical Sensing of Thallium(I) with Ultrathin In ₂ S ₃ Nanosheets. ACS Applied Electronic Materials, 2021, 3, 2490-2496.	2.0	2
130	Review of the formation and influencing factors of food-derived glycated lipids. Critical Reviews in Food Science and Nutrition, 2020, , 1-16.	5.4	2
131	Sesamol can inhibit the formation of glycidyl ester in deep frying palm oil. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
132	Lithium–Sulfur Batteries: Compactly Coupled Nitrogenâ€Doped Carbon Nanosheets/Molybdenum Phosphide Nanocrystal Hollow Nanospheres as Polysulfide Reservoirs for Highâ€Performance Lithium–Sulfur Chemistry (Small 40/2019). Small, 2019, 15, 1970216.	5.2	1
133	N-Doped Graphene Oxide Decorated with PtCo Nanoparticles for Immobilization of Double-Stranded Deoxyribonucleic Acid and Investigation of Clenbuterol-Induced DNA Damage. ACS Omega, 2019, 4, 16524-16530.	1.6	1
134	Effects of Methyl Cellulose and Soybean Protein Isolate Coating on Amount of Oil and Chemical Hazards in Chinese Fried Dough Cake. Journal of Food Protection, 2021, 84, 1333-1339.	0.8	0