Rebecca L Gieseking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909661/publications.pdf

Version: 2024-02-01

471509 454955 1,043 31 17 30 citations h-index g-index papers 35 35 35 1596 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Materials, 2017, 16, 918-924.	27.5	229
2	25th Anniversary Article: Design of Polymethine Dyes for Allâ€Optical Switching Applications: Guidance from Theoretical and Computational Studies. Advanced Materials, 2014, 26, 68-84.	21.0	97
3	Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nature Communications, 2019, 10, 5502.	12.8	84
4	Complementary halogen and hydrogen bonding: sulfurâciodine interactions and thioamide ribbons. Chemical Communications, 2010, 46, 1854-1856.	4.1	78
5	Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores. Journal of Physical Chemistry Letters, 2015, 6, 2158-2162.	4.6	75
6	Polymethine materials with solid-state third-order optical susceptibilities suitable for all-optical signal-processing applications. Materials Horizons, 2014, 1, 577-581.	12.2	59
7	Semiempirical Modeling of Ag Nanoclusters: New Parameters for Optical Property Studies Enable Determination of Double Excitation Contributions to Plasmonic Excitation. Journal of Physical Chemistry A, 2016, 120, 4542-4549.	2.5	45
8	Theoretical modeling of voltage effects and the chemical mechanism in surface-enhanced Raman scattering. Faraday Discussions, 2017, 205, 149-171.	3.2	40
9	Impact of the Nature of the Excited-State Transition Dipole Moments on the Third-Order Nonlinear Optical Response of Polymethine Dyes for All-Optical Switching Applications. ACS Photonics, 2014, 1, 261-269.	6.6	35
10	Bias-Dependent Chemical Enhancement and Nonclassical Stark Effect in Tip-Enhanced Raman Spectromicroscopy of CO-Terminated Ag Tips. Journal of Physical Chemistry Letters, 2018, 9, 3074-3080.	4.6	32
11	Benchmarking Density Functional Theory Approaches for the Description of Symmetry Breaking in Long Polymethine Dyes. Journal of Physical Chemistry C, 2016, 120, 9975-9984.	3.1	25
12	Third-Order Nonlinear Optical Properties of Ag Nanoclusters: Connecting Molecule-like and Nanoparticle-like Behavior. Chemistry of Materials, 2019, 31, 6850-6859.	6.7	23
13	Nonlinear Optical Properties of X(C ₆ H ₅) ₄ (X = B ^{â€"} , C,) Tj E Journal of the American Chemical Society, 2015, 137, 9635-9642.	ETQq1 1 0. 13.7	0.784314 rg 21
14	Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications. Journal of Physical Chemistry C, 2014, 118, 23575-23585.	3.1	20
15	Review of Plasmon-Induced Hot-Electron Dynamics and Related SERS Chemical Effects. ACS Symposium Series, 2016, , 1-22.	0.5	19
16	Analytical Approaches To Identify Plasmon-like Excited States in Bare and Ligand-Protected Metal Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 3260-3269.	3.1	19
17	Effect of Bulky Substituents on Thiopyrylium Polymethine Aggregation in the Solid State: A Theoretical Evaluation of the Implications for All-Optical Switching Applications. Chemistry of Materials, 2014, 26, 6439-6447.	6.7	18
18	A new release of <scp>MOPAC</scp> incorporating the <scp>INDO</scp> /S semiempirical model with <scp>CI</scp> excited states. Journal of Computational Chemistry, 2021, 42, 365-378.	3.3	18

#	Article	IF	Citations
19	Quantum Mechanical Identification of Quadrupolar Plasmonic Excited States in Silver Nanorods. Journal of Physical Chemistry A, 2016, 120, 9324-9329.	2.5	17
20	Semiempirical modeling of electrochemical charge transfer. Faraday Discussions, 2017, 199, 547-563.	3.2	17
21	Benchmarking Semiempirical Methods To Compute Electrochemical Formal Potentials. Journal of Physical Chemistry A, 2018, 122, 6809-6818.	2.5	15
22	Benchmarking Post-Hartree–Fock Methods To Describe the Nonlinear Optical Properties of Polymethines: An Investigation of the Accuracy of Algebraic Diagrammatic Construction (ADC) Approaches. Journal of Chemical Theory and Computation, 2016, 12, 5465-5476.	5.3	13
23	Plasmons: untangling the classical, experimental, and quantum mechanical definitions. Materials Horizons, 2022, 9, 25-42.	12.2	13
24	Assessment of Front-Substituted Zwitterionic Cyanine Polymethines for All-Optical Switching Applications. Journal of Physical Chemistry C, 2017, 121, 14166-14175.	3.1	10
25	Implementation of INDO/SCI with COSMO Implicit Solvation and Benchmarking for Solvatochromic Shifts. Journal of Physical Chemistry A, 2016, 120, 9878-9885.	2.5	6
26	Evolution of plasmon-like excited states in silver nanowires and nanorods. Journal of Chemical Physics, 2022, 156, 074301.	3.0	5
27	Hydride- and halide-substituted Au ₉ (PH ₃) ₈ ³⁺ nanoclusters: similar absorption spectra disguise distinct geometries and electronic structures. Physical Chemistry Chemical Physics, 2021, 23, 17287-17299.	2.8	4
28	Recognition of halides and Y-shaped oxoanions by carbonylchromium-based urea-like molecules: A theoretical analysis of hydrogen bonding modes. Journal of Molecular Graphics and Modelling, 2016, 64, 1-10.	2.4	3
29	Quantum Mechanical Effects in High-Resolution Tip-Enhanced Raman Imaging. Journal of Physical Chemistry C, 2022, 126, 11690-11700.	3.1	2
30	Understanding the Relationships Among Molecular Structure, Excited-State Properties, and Polarizabilities of π-Conjugated Chromophores. Materials and Energy, 2016, , 393-419.	0.1	1
31	Horizons Community Board collection: solar energy conversion. Nanoscale Horizons, 2021, 6, 839-841.	8.0	O