
Pedro M Aparicio-Tejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen nutrition and antioxidant metabolism in ammoniumâ€ŧolerant and â€sensitive plants. Physiologia Plantarum, 2008, 132, 359-369.	2.6	89
2	Thirteen years of continued application of composted organic wastes in a vineyard modify soil quality characteristics. Soil Biology and Biochemistry, 2015, 90, 241-254.	4.2	86
3	Role of glutamate dehydrogenase and phosphoenolpyruvate carboxylase activity in ammonium nutrition tolerance in roots. Plant Physiology and Biochemistry, 2002, 40, 969-976.	2.8	78
4	Effect of N-(n-butyl) thiophosphoric triamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L Plant Growth Regulation, 2011, 63, 73-79.	1.8	61
5	Foliar application of urea to "Sauvignon Blanc―and "Merlot―vines: doses and time of application. Plant Growth Regulation, 2012, 67, 73-81.	1.8	56
6	Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability. Agronomy for Sustainable Development, 2001, 21, 607-613.	0.8	56
7	Short-term ammonium supply stimulates glutamate dehydrogenase activity and alternative pathway respiration in roots of pea plants. Journal of Plant Physiology, 2002, 159, 811-818.	1.6	55
8	Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiologia Plantarum, 2001, 113, 33-40.	2.6	54
9	Function of antioxidant enzymes and metabolites during maturation of pea fruits. Journal of Experimental Botany, 2010, 61, 87-97.	2.4	54
10	High irradiance increases NH4+ tolerance in Pisum sativum: Higher carbon and energy availability improve ion balance but not N assimilation. Journal of Plant Physiology, 2011, 168, 1009-1015.	1.6	54
11	Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes. Physiologia Plantarum, 2013, 148, 522-537.	2.6	54
12	Intra-specific variation in pea responses to ammonium nutrition leads to different degrees of tolerance. Environmental and Experimental Botany, 2011, 70, 233-243.	2.0	53
13	Imazethapyr, an inhibitor of the branched-chain amino acid biosynthesis, induces aerobic fermentation in pea plants. Physiologia Plantarum, 2002, 114, 524-532.	2.6	52
14	Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in <i>Arabidopsis thaliana</i> and <i>Brassica oleracea</i> . Journal of Experimental Botany, 2016, 67, 3313-3323.	2.4	52
15	Nitrogen fixation, stomatal response and transpiration in Medicago sativa, Trifolium repens and T. subterraneum under water stress and recovery. Physiologia Plantarum, 1980, 48, 1-4.	2.6	50
16	Source of nitrogen nutrition (nitrogen fixation or nitrate assimilation) is a major factor involved in pea response to moderate water stress. Journal of Plant Physiology, 2000, 157, 609-617.	1.6	49
17	Meat waste as feedstock for home composting: Effects on the process and quality of compost. Waste Management, 2016, 56, 53-62.	3.7	47
18	Physiological consequences of continuous, sublethal imazethapyr supply to pea plants. Journal of Plant Physiology, 2000, 157, 345-354.	1.6	46

#	Article	IF	CITATIONS
19	High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L Journal of Plant Physiology, 2010, 167, 1038-1045.	1.6	43
20	Root–shoot interactions explain the reduction of leaf mineral content in <i>Arabidopsis</i> plants grown under elevated [<scp>CO₂</scp>] conditions. Physiologia Plantarum, 2016, 158, 65-79.	2.6	42
21	Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants. BMC Plant Biology, 2011, 11, 83.	1.6	41
22	Two Fe-superoxide dismutase families respond differently to stress and senescence in legumes. Journal of Plant Physiology, 2012, 169, 1253-1260.	1.6	38
23	Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response. Journal of Plant Physiology, 2015, 189, 65-76.	1.6	37
24	Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily. Science Advances, 2018, 4, eaar3599.	4.7	33
25	Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus) Tj ETQq1 1 0	.784314 rg 2.0	gBŢ /Overloc
26	Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC Plant Biology, 2017, 17, 157.	1.6	30
27	Title is missing!. Plant Growth Regulation, 2002, 37, 49-55.	1.8	29
28	Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea. Journal of Plant Physiology, 2011, 168, 329-336.	1.6	26
29	3,4-Dimethylpyrazole phosphate and 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: Quantification in plant tissues and toxicity assays. Science of the Total Environment, 2018, 624, 1180-1186.	3.9	26
30	lsotopic Discrimination as a Tool for Organic Farming Certification in Sweet Pepper. Journal of Environmental Quality, 2008, 37, 182-185.	1.0	23
31	Overexpression of a pine Dof transcription factor in hybrid poplars: A comparative study in trees growing under controlled and natural conditions. PLoS ONE, 2017, 12, e0174748.	1.1	21
32	Unravelling the mechanisms that improve photosynthetic performance of N2-fixing pea plants exposed to elevated [CO2]. Environmental and Experimental Botany, 2014, 99, 167-174.	2.0	19
33	Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability. Frontiers in Plant Science, 2015, 6, 574.	1.7	19
34	Imazethapyr inhibition of acetolactate synthase inRhizobiumand its symbiosis with pea. Pest Management Science, 1998, 52, 372-380.	0.6	16
35	Expression and Localization of a <i>Rhizobium</i> -Derived Cambialistic Superoxide Dismutase in Pea (<i>Pisum sativum</i>) Nodules Subjected to Oxidative Stress. Molecular Plant-Microbe Interactions, 2011, 24, 1247-1257.	1.4	14
36	Effect of Low Nitrate Supply on Nitrogen Fixation in Alfalfa Root Nodules Induced by Rhizobium meliloti Strains with Varied Nitrate Reductase Activity. Journal of Plant Physiology, 1989, 135, 207-211.	1.6	13

#	Article	IF	CITATIONS
37	Unraveling the role of transient starch in the response of Arabidopsis to elevated CO2 under long-day conditions. Environmental and Experimental Botany, 2018, 155, 158-164.	2.0	13

38 Solute Heterogeneity and Osmotic Adjustment in Different Leaf Structures of Semi-Leafless Pea (Pisum) Tj ETQq0 0.0 rgBT /Oyerlock 10

39	Nitrate Metabolism in Alfalfa Root Nodules under Water Stress. Journal of Experimental Botany, 1986, 37, 798-806.	2.4	8
40	Denitrification and Respiration in Rhizobium meliloti Bacteroids and Lucerne Nodules as Affected by Nitrate Supply. Journal of Plant Physiology, 1992, 139, 373-378.	1.6	8
41	The physiological implications of urease inhibitors on N metabolism during germination of Pisum sativum and Spinacea oleracea seeds. Journal of Plant Physiology, 2012, 169, 673-681.	1.6	6
42	Influence of stage of development in the efficiency of nitrogen fertilization on poplar. Journal of Plant Nutrition, 2016, 39, 87-98.	0.9	6
43	Assessing the efficiency of dimethylpyrazole-based nitrification inhibitors under elevated CO2 conditions. Geoderma, 2021, 400, 115160.	2.3	6
44	Nitrate reduction in tendrils of semi-leafless pea. Physiologia Plantarum, 2001, 111, 329-335.	2.6	5
45	Effect of digested sewage sludge on the efficiency of N-fertilizer applied to barley. Nutrient Cycling in Agroecosystems, 1997, 48, 241-246.	1.1	4
46	Measured and Calculated Transpiration inTrifolium repensunder Different Water Potentials. Journal of Experimental Botany, 1980, 31, 839-843.	2.4	3
47	Integration of a Communal Henhouse and Community Composter to Increase Motivation in Recycling Programs: Overview of a Three-Year Pilot Experience in NoÃjin (Spain). Sustainability, 2018, 10, 690.	1.6	3
48	Biological and synthetic approaches to inhibiting nitrification in non-tilled Mediterranean soils. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	1