Clemens Burda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews, 2005, 105, 1025-1102.	47.7	6,821
2	Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters, 2003, 3, 1049-1051.	9.1	1,199
3	The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped TiO ₂ Nanomaterials. Journal of the American Chemical Society, 2008, 130, 5018-5019.	13.7	1,119
4	The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews, 2012, 41, 2885.	38.1	974
5	Plasmonic Cu _{2â^'<i>x</i>} S Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. Journal of the American Chemical Society, 2009, 131, 4253-4261.	13.7	920
6	Copper Oxide Nanocrystals. Journal of the American Chemical Society, 2005, 127, 9506-9511.	13.7	873
7	Semiconductor Quantum Dots for Photodynamic Therapy. Journal of the American Chemical Society, 2003, 125, 15736-15737.	13.7	753
8	Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses. Journal of Physical Chemistry B, 2000, 104, 6152-6163.	2.6	745
9	Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. Journal of Physical Chemistry B, 2004, 108, 1230-1240.	2.6	743
10	Highly Efficient Drug Delivery with Gold Nanoparticle Vectors for <i>in Vivo</i> Photodynamic Therapy of Cancer. Journal of the American Chemical Society, 2008, 130, 10643-10647.	13.7	682
11	Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 15446-15449.	2.6	625
12	Femtosecond Time-Resolved Transient Absorption Spectroscopy of CH ₃ NH ₃ PbI ₃ Perovskite Films: Evidence for Passivation Effect of PbI ₂ . Journal of the American Chemical Society, 2014, 136, 12205-12208.	13.7	501
13	Laser Photothermal Melting and Fragmentation of Gold Nanorods:Â Energy and Laser Pulse-Width Dependence. Journal of Physical Chemistry A, 1999, 103, 1165-1170.	2.5	471
14	TiO ₂ Nanoparticles as Functional Building Blocks. Chemical Reviews, 2014, 114, 9283-9318.	47.7	410
15	Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder. Advanced Functional Materials, 2005, 15, 41-49.	14.9	402
16	Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation. Journal of Chemical Physics, 1999, 111, 1255-1264.	3.0	342
17	Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy and Environmental Science, 2012, 5, 5564-5576.	30.8	334
18	Emergent Properties Resulting from Typeâ€I Band Alignment in Semiconductor Nanoheterostructures. Advanced Materials. 2011. 23. 180-197.	21.0	302

#	Article	IF	CITATIONS
19	Size and structure effect on optical transitions of iron oxide nanocrystals. Physical Review B, 2005, 71, .	3.2	287
20	Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbl ₃ perovskite. Dalton Transactions, 2016, 45, 3806-3813.	3.3	283
21	Deep Penetration of a PDT Drug into Tumors by Noncovalent Drug-Gold Nanoparticle Conjugates. Journal of the American Chemical Society, 2011, 133, 2583-2591.	13.7	270
22	Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy. Photochemistry and Photobiology, 2006, 82, 617.	2.5	261
23	Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 2005, 61, 11-18.	8.2	250
24	Nanoparticle ζ -Potentials. Accounts of Chemical Research, 2012, 45, 317-326.	15.6	249
25	Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy. Journal of Physical Chemistry B, 1999, 103, 1783-1788.	2.6	221
26	The Relaxation Pathways of CdSe Nanoparticles Monitored with Femtosecond Time-Resolution from the Visible to the IR:Â Assignment of the Transient Features by Carrier Quenching. Journal of Physical Chemistry B, 2001, 105, 12286-12292.	2.6	220
27	Defect-Related Optical Behavior in Surface Modified TiO2 Nanostructures. Advanced Functional Materials, 2005, 15, 161-167.	14.9	212
28	Photoluminescence of CdSe Nanoparticles in the Presence of a Hole Acceptor:Ân-Butylamine. Journal of Physical Chemistry B, 2001, 105, 2981-2986.	2.6	210
29	DNAâ€Hybridâ€Gated Multifunctional Mesoporous Silica Nanocarriers for Dualâ€Targeted and MicroRNAâ€Responsive Controlled Drug Delivery. Angewandte Chemie - International Edition, 2014, 53, 2371-2375.	13.8	210
30	Synthesis and Photophysical Properties of Ternary I–III–VI AgInS ₂ Nanocrystals: Intrinsic versus Surface States. Journal of Physical Chemistry C, 2011, 115, 8945-8954.	3.1	207
31	Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time. Physical Review B, 2000, 61, 6086-6090.	3.2	206
32	Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (ii) sensing. Chemical Communications, 2011, 47, 4237.	4.1	200
33	Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chemical Physics, 2007, 339, 1-10.	1.9	195
34	Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Letters, 2003, 3, 799-803.	9.1	194
35	The Effects of Sintering on the Photocatalytic Activity of N-Doped TiO ₂ Nanoparticles. Chemistry of Materials, 2008, 20, 2629-2636.	6.7	159
36	Metal Oxide-Based Tandem Cells for Self-Biased Photoelectrochemical Water Splitting. ACS Energy Letters, 2020, 5, 844-866.	17.4	149

#	Article	IF	CITATIONS
37	Nanoparticle mediated non-covalent drug delivery. Advanced Drug Delivery Reviews, 2013, 65, 607-621.	13.7	145
38	Delivery and Efficacy of a Cancer Drug as a Function of the Bond to the Gold Nanoparticle Surface. Langmuir, 2010, 26, 2248-2255.	3.5	144
39	How long does it take to melt a gold nanorod?. Chemical Physics Letters, 1999, 315, 12-18.	2.6	135
40	lron(ii) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes. Nature Chemistry, 2019, 11, 1144-1150.	13.6	129
41	Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer. ACS Nano, 2018, 12, 3714-3725.	14.6	128
42	Shape Dependent Ultrafast Relaxation Dynamics of CdSe Nanocrystals:  Nanorods vs Nanodots. Nano Letters, 2001, 1, 589-593.	9.1	126
43	Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 94-100.	3.9	123
44	Charge Separation and Recombination in CdTe/CdSe Core/Shell Nanocrystals as a Function of Shell Coverage: Probing the Onset of the Quasi Type-II Regime. Journal of Physical Chemistry Letters, 2010, 1, 2530-2535.	4.6	121
45	X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C- and S-doped TiO2. Journal of Electron Spectroscopy and Related Phenomena, 2008, 162, 67-73.	1.7	119
46	Peptide-Targeted Gold Nanoparticles for Photodynamic Therapy of Brain Cancer. Particle and Particle Systems Characterization, 2015, 32, 448-457.	2.3	119
47	Observation of Non-Förster-Type Energy-Transfer Behavior in Quantum DotⰒPhthalocyanine Conjugates. Journal of the American Chemical Society, 2006, 128, 13974-13975.	13.7	113
48	Investigation of the Crystallization Process in 2 nm CdSe Quantum Dots. Journal of the American Chemical Society, 2005, 127, 4372-4375.	13.7	112
49	Study of the Partial Ag-to-Zn Cation Exchange in AgInS ₂ /ZnS Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 648-656.	3.1	112
50	MoS ₂ -Stratified CdS-Cu _{2–<i>x</i>} S Core–Shell Nanorods for Highly Efficient Photocatalytic Hydrogen Production. ACS Nano, 2020, 14, 5468-5479.	14.6	109
51	The Quenching of CdSe Quantum Dots Photoluminescence by Gold Nanoparticles in Solution¶. Photochemistry and Photobiology, 2002, 75, 591.	2.5	108
52	Enhancing Thermoelectric Performance of Ternary Nanocrystals through Adjusting Carrier Concentration. Journal of the American Chemical Society, 2010, 132, 4982-4983.	13.7	105
53	Synthesis and Characterization of Nitrogenâ€Doped Group IVB Visibleâ€Lightâ€Photoactive Metal Oxide Nanoparticles. Advanced Materials, 2007, 19, 3995-3999	21.0	104
54	PbTe Nanorods by Sonoelectrochemistry. Angewandte Chemie - International Edition, 2005, 44, 5855-5857.	13.8	103

#	Article	IF	CITATIONS
55	Addressing Brain Tumors with Targeted Cold Nanoparticles: A New Cold Standard for Hydrophobic Drug Delivery?. Small, 2011, 7, 2301-2306.	10.0	103
56	Nanoparticles for imaging and treating brain cancer. Nanomedicine, 2013, 8, 123-143.	3.3	102
57	Near Infrared Lightâ€Triggered Drug Generation and Release from Gold Nanoparticle Carriers for Photodynamic Therapy. Small, 2014, 10, 1799-1804.	10.0	99
58	Surface Effects on Quantum Dot-Based Energy Transfer. Journal of the American Chemical Society, 2007, 129, 7977-7981.	13.7	97
59	Observation of Large Changes in the Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a Strong Hole Acceptor. Nano Letters, 2001, 1, 667-670.	9.1	94
60	Evaluation of the photoinduced electron relaxation dynamics of Cu1.8S quantum dots. Physical Chemistry Chemical Physics, 2003, 5, 1091-1095.	2.8	94
61	Transient Spectroscopy of a Derivative of 2,2-Difluoro-1,3-diphenylcyclopentane-1,3-diylA Persistent Localized Singlet 1,3-Diradical. Journal of the American Chemical Society, 1998, 120, 593-594.	13.7	93
62	Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity. Physical Chemistry Chemical Physics, 2008, 10, 5633.	2.8	93
63	Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence. Chemical Communications, 2010, 46, 2974.	4.1	93
64	Meta and Para Effects in the Ultrafast Excited-State Dynamics of the Green Fluorescent Protein Chromophores. Journal of Physical Chemistry B, 2008, 112, 2700-2711.	2.6	92
65	Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chemical Communications, 2013, 49, 7797.	4.1	91
66	Electrophoretic Mobilities of PEGylated Gold NPs. Journal of the American Chemical Society, 2010, 132, 15624-15631.	13.7	88
67	On the potential for nanoscale metal–organic frameworks for energy applications. Journal of Materials Chemistry A, 2019, 7, 21545-21576.	10.3	88
68	Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129435.	2.4	86
69	New Transient Absorption Observed in the Spectrum of Colloidal CdSe Nanoparticles Pumped with High-Power Femtosecond Pulses. Journal of Physical Chemistry B, 1999, 103, 10775-10780.	2.6	85
70	Variation of the Thickness and Number of Wells in the CdS/HgS/CdS Quantum Dot Quantum Well System. Journal of Physical Chemistry A, 2001, 105, 5548-5551.	2.5	83
71	Heterostructured Bi2Se3 Nanowires with Periodic Phase Boundaries. Journal of the American Chemical Society, 2004, 126, 16276-16277.	13.7	79
72	Doped Semiconductor Nanomaterials. Journal of Nanoscience and Nanotechnology, 2005, 5, 1408-1420.	0.9	79

#	Article	IF	CITATIONS
73	Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chimica Acta, 2012, 393, 142-153.	2.4	78
74	Targeted Gold Nanoclusterâ€Enhanced Radiotherapy of Prostate Cancer. Small, 2019, 15, e1900968.	10.0	78
75	Femtosecond Spectroscopic Investigation of the Carrier Lifetimes in Digenite Quantum Dots and Discrimination of the Electron and Hole Dynamics via Ultrafast Interfacial Electron Transfer. Journal of Physical Chemistry B, 2003, 107, 12431-12437.	2.6	77
76	Measuring Electron and Hole Transfer in Core/Shell Nanoheterostructures. ACS Nano, 2011, 5, 6016-6024.	14.6	76
77	Fabrication of a boron nitride–gold nanocluster composite and its versatile application for immunoassays. Chemical Communications, 2013, 49, 10757.	4.1	75
78	Novel TiO2 nanocatalysts for wastewater purification: tapping energy from the sun. Water Science and Technology, 2006, 54, 47-54.	2.5	73
79	The pump power dependence of the femtosecond relaxation of CdSe nanoparticles observed in the spectral range from visible to infrared. Journal of Chemical Physics, 2002, 116, 3828-3833.	3.0	72
80	Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy. Cancer Research, 2003, 63, 5194-7.	0.9	72
81	Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2. Catalysis Today, 2014, 225, 24-33.	4.4	71
82	Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers, 2021, 13, 1825.	3.7	71
83	Transient Absorption Spectra and Reaction Kinetics of Singlet Phenylnitrene and Its 2,4,6-Tribromo Derivative in Solution. Journal of the American Chemical Society, 1997, 119, 5061-5062.	13.7	70
84	Thermal Conductivity of CH ₃ NH ₃ PbI ₃ and CsPbI ₃ : Measuring the Effect of the Methylammonium Ion on Phonon Scattering. Journal of Physical Chemistry C, 2017, 121, 3228-3233.	3.1	69
85	Near-Infrared Emitting AgInS ₂ /ZnS Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 13883-13889.	3.1	68
86	Visible-light-driven reversible and switchable hydrophobic to hydrophilic nitrogen-doped titania surfaces: correlation with photocatalysis. Nanoscale, 2010, 2, 2257.	5.6	67
87	Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches. Journal of Materials Chemistry, 2011, 21, 17049.	6.7	63
88	Fluorescent carbon dots from milk by microwave cooking. RSC Advances, 2016, 6, 41516-41521.	3.6	63
89	Improving Thermoelectric Properties of Chemically Synthesized Bi ₂ Te ₃ -Based Nanocrystals by Annealing. Journal of Physical Chemistry C, 2010, 114, 11607-11613.	3.1	61
90	Nanostructured Bi2Se3 Films and Their Thermoelectric Transport Properties. Angewandte Chemie - International Edition, 2006, 45, 5656-5659.	13.8	60

#	Article	IF	CITATIONS
91	Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: does size matter for targeted particles?. Chemical Science, 2019, 10, 8119-8128.	7.4	60
92	High-density femtosecond transient absorption spectroscopy of semiconductor nanoparticles. A tool to investigate surface quality. Pure and Applied Chemistry, 2000, 72, 165-177.	1.9	59
93	Preparation and photocatalytic performance of MWCNTs/BiOCI: Evidence for the superoxide radical participation in the degradation mechanism of phenol. Applied Surface Science, 2019, 480, 395-403.	6.1	59
94	Semiconductor Quantum Dots as Two-Photon Sensitizers. Journal of the American Chemical Society, 2008, 130, 2890-2891.	13.7	58
95	Chemical Synthesis of Bi _{0.5} Sb _{1.5} Te ₃ Nanocrystals and Their Surface Oxidation Properties. ACS Applied Materials & Interfaces, 2009, 1, 1259-1263.	8.0	58
96	Femtosecond time-resolved energy transfer from CdSe nanoparticles to phthalocyanines. Applied Physics B: Lasers and Optics, 2006, 84, 309-315.	2.2	57
97	Ultrafast Photoinduced Electron Transfer between an Incarcerated Donor and a Free Acceptor in Aqueous Solution. Journal of the American Chemical Society, 2012, 134, 14718-14721.	13.7	56
98	Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water. Electrochemistry Communications, 2007, 9, 551-557.	4.7	54
99	Effect of Quantum Dot Deposition on the Interfacial Flatband Potential, Depletion Layer in TiO ₂ Nanotube Electrodes, and Resulting H ₂ Generation Rates. Journal of Physical Chemistry C, 2012, 116, 18633-18640.	3.1	51
100	Photochemistry of 1H-Benzotriazole in Aqueous Solution:Â A Photolatent Base. Journal of the American Chemical Society, 2000, 122, 5849-5855.	13.7	50
101	Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. Nano Letters, 2016, 16, 7925-7929.	9.1	50
102	Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Materials and Design, 2018, 146, 125-133.	7.0	49
103	Enhanced photocatalytic performance of Ag 2 O/BiOF composite photocatalysts originating from efficient interfacial charge separation. Applied Surface Science, 2017, 416, 666-671.	6.1	48
104	Mixed metal carbonates/hydroxides for concentrating solar power analyzed with DSC and XRD. Solar Energy Materials and Solar Cells, 2015, 140, 167-173.	6.2	47
105	Targeting of mitochondria by 10-N-alkyl acridine orange analogues: Role of alkyl chain length in determining cellular uptake and localization. Mitochondrion, 2008, 8, 237-246.	3.4	45
106	Microwave-assisted preparation of flower-like C60/BiOBr with significantly enhanced visible-light photocatalytic performance. Applied Surface Science, 2021, 540, 148340.	6.1	44
107	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
108	Evolution of microscopic heterogeneity and dynamics in choline chloride-based deep eutectic solvents. Nature Communications, 2022, 13, 219.	12.8	42

#	Article	IF	CITATIONS
109	Control of Surface Ligand Density on PEGylated Gold Nanoparticles for Optimized Cancer Cell Uptake. Particle and Particle Systems Characterization, 2015, 32, 197-204.	2.3	38
110	Reverse saturable absorbing cationic iridium(<scp>iii</scp>) complexes bearing the 2-(2-quinolinyl)quinoxaline ligand: effects of different cyclometalating ligands on linear and nonlinear absorption. Journal of Materials Chemistry C, 2016, 4, 5059-5072.	5.5	37
111	Targeted Radiosensitizers for MR-Guided Radiation Therapy of Prostate Cancer. Nano Letters, 2020, 20, 7159-7167.	9.1	37
112	Coordination engineering toward high performance organic–inorganic hybrid perovskites. Coordination Chemistry Reviews, 2016, 320-321, 53-65.	18.8	34
113	Improving the thermal properties of ternary carbonates for concentrating solar power through simple chemical modifications by adding sodium hydroxide and nitrate. Solar Energy Materials and Solar Cells, 2014, 124, 61-66.	6.2	33
114	Electron-transfer dependent photocatalytic hydrogen generation over cross-linked CdSe/TiO ₂ type-II heterostructure. Nanotechnology, 2017, 28, 084002.	2.6	33
115	Study of concentration-dependent cobalt ion doping of TiO2 and TiO2â^'xNx at the nanoscale. Nanoscale, 2010, 2, 1134.	5.6	32
116	3D In Situ ToFâ€SIMS Imaging of Perovskite Films under Controlled Humidity Environmental Conditions. Advanced Materials Interfaces, 2017, 4, 1600673.	3.7	32
117	Solvation Dynamics of Wet Ethaline: Water is the Magic Component. Journal of Physical Chemistry B, 2021, 125, 8888-8901.	2.6	32
118	Femtosecond Dynamics of a Simple Merocyanine Dye:Â Does Deprotonation Compete with Isomerization?. Journal of the American Chemical Society, 2000, 122, 6720-6726.	13.7	31
119	Transfer times of electrons and holes across the interface in CdS/HgS/CdS quantum dot quantum well nanoparticles. Chemical Physics Letters, 2002, 361, 446-452.	2.6	31
120	Investigation of moisture stability and PL characteristics of terpineol-passivated organic–inorganic hybrid perovskite. Materials for Renewable and Sustainable Energy, 2016, 5, 1.	3.6	29
121	X-ray Structures, Photophysical Characterization, and Computational Analysis of Geometrically Constrained Copper(I)â^'Phenanthroline Complexes. Inorganic Chemistry, 2003, 42, 4918-4929.	4.0	28
122	Charge Separation Effects on the Rate of Nonradiative Relaxation Processes in Quantum Dotsâ~'Quantum Well Heteronanostructures. Journal of Physical Chemistry A, 1998, 102, 6581-6584.	2.5	27
123	Contribution of Femtosecond Laser Spectroscopy to the Development of Advanced Optoelectronic Nanomaterials. Journal of Physical Chemistry Letters, 2012, 3, 1921-1927.	4.6	27
124	Gold Nanoclusters as Signal Amplification Labels for Optical Immunosensors. Journal of Physical Chemistry C, 2012, 116, 2548-2554.	3.1	27
125	Optimizing Nanoscale TiO ₂ for Adsorptionâ€Enhanced Photocatalytic Degradation of Lowâ€Concentration Air Pollutants. ChemCatChem, 2013, 5, 3114-3123.	3.7	27
126	Exploring Ultrafast Electronic Processes of Quasi-Type II Nanocrystals by Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 16255-16263.	3.1	27

#	Article	IF	CITATIONS
127	Spectroscopic investigation of II VI core-shell nanoparticles: CdSe/CdS. International Journal of Nanotechnology, 2004, 1, 105.	0.2	26
128	Effect of the Functionalization of the Axial Phthalocyanine Ligands on the Energy Transfer in QD-based Donor–Acceptor Pairs. Photochemistry and Photobiology, 2007, 84, 071117035358009-???.	2.5	26
129	Thermoelectric properties of pressed bismuth nanoparticles. Superlattices and Microstructures, 2008, 43, 195-207.	3.1	26
130	Heteroleptic cationic iridium(<scp>iii</scp>) complexes bearing naphthalimidyl substituents: synthesis, photophysics and reverse saturable absorption. Dalton Transactions, 2015, 44, 2176-2190.	3.3	26
131	Observation and Photophysical Characterization of Silicon Phthalocyanine Jâ€Aggregate Dimers in Aqueous Solutions. Chemistry - A European Journal, 2014, 20, 8030-8039.	3.3	25
132	Reduction of Electron Repulsion in Highly Covalent Fe-Amido Complexes Counteracts the Impact of a Weak Ligand Field on Excited-State Ordering. Journal of the American Chemical Society, 2021, 143, 20645-20656.	13.7	25
133	Femtosecond time-resolved electron-hole dynamics and radiative transitions in the double-layer quantum well of theCdS/(HgS)2/CdSquantum-dot–quantum-well nanoparticle. Physical Review B, 2001, 64, .	3.2	24
134	Chemistry and Properties of Nanocrystals of Different Shapes. ChemInform, 2005, 36, no.	0.0	24
135	Solar-Light Photoamperometric and Photocatalytic Properties of Quasi-transparent TiO ₂ Nanoporous Thin Films. ACS Applied Materials & Interfaces, 2010, 2, 3075-3082.	8.0	24
136	Electrochemical Fabrication of rGO-embedded Ag-TiO2 Nanoring/Nanotube Arrays for Plasmonic Solar Water Splitting. Nano-Micro Letters, 2019, 11, 97.	27.0	24
137	Synthesis and Photoelectrochemical Properties of (Cu2Sn)xZn3(1–x)S3 Nanocrystal Films. Journal of Physical Chemistry C, 2014, 118, 11954-11963.	3.1	23
138	Nanoparticles Yield Increased Drug Uptake and Therapeutic Efficacy upon Sequential Near-Infrared Irradiation. ACS Nano, 2020, 14, 15193-15203.	14.6	23
139	Optoelectronic Dichotomy of Mixed Halide CH ₃ NH ₃ Pb(Br _{1–<i>x</i>} Cl _{<i>x</i>}) ₃ Single Crystals: Surface versus Bulk Photoluminescence. Journal of the American Chemical Society, 2018 140 11811-11819	13.7	22
140	Unusual properties and reactivity at the nanoscale. Journal of Physics and Chemistry of Solids, 2005, 66, 546-550.	4.0	21
141	Effect of chloride substitution on interfacial charge transfer processes in MAPbI ₃ perovskite thin film solar cells: planar <i>versus</i> mesoporous. Nanoscale Advances, 2019, 1, 827-833.	4.6	21
142	The Effect of Ligand Constraints on the Metal-to-Ligand Charge-Tranfer Relaxation Dynamics of Copper(I)â^'Phenanthroline Complexes:Â A Comparative Study by Femtosecond Time-Resolved Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 563-569.	2.6	19
143	Wireless Activation of Neurons in Brain Slices Using Nanostructured Semiconductor Photoelectrodes. Angewandte Chemie - International Edition, 2009, 48, 2407-2410.	13.8	19
144	Ultrafast Electron Transfer across a Nanocapsular Wall: Coumarins as Donors, Viologen as Acceptor, and Octa Acid Capsule as the Mediator. Journal of Physical Chemistry B, 2018, 122, 328-337.	2.6	19

#	Article	IF	CITATIONS
145	Light management in photoelectrochemical water splitting – from materials to device engineering. Journal of Materials Chemistry C, 2021, 9, 3726-3748.	5.5	19
146	A Simple Parallel Photochemical Reactor for Photodecomposition Studies. Journal of Chemical Education, 2006, 83, 265.	2.3	18
147	NIR Photocleavage of the Si–C Bond in Axial Si-Phthalocyanines. Journal of Physical Chemistry A, 2014, 118, 10587-10595.	2.5	18
148	Reply to "Comment on "Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles'― Journal of Physical Chemistry B, 2006, 110, 7081-7082.	2.6	17
149	Charge Transfer in CdSe Nanocrystal Complexes with an Electroactive Polymer. Journal of Physical Chemistry C, 2013, 117, 18870-18884.	3.1	17
150	Nanotechnology for Electroanalytical Biosensors of Reactive Oxygen and Nitrogen Species. Chemical Record, 2017, 17, 886-901.	5.8	17
151	What Is the Optoelectronic Effect of the Capsule on the Guest Molecule in Aqueous Host/Guest Complexes? A Combined Computational and Spectroscopic Perspective. Journal of Physical Chemistry C, 2017, 121, 15481-15488.	3.1	17
152	Visible-light Photodegradation of Higher Molecular Weight Organics on N-doped TiO2 Nanostructured Thin Films. Topics in Catalysis, 2008, 47, 42-48.	2.8	16
153	Effect of Sintering on the Thermoelectric Transport Properties of Bulk Nanostructured Bi0.5Sb1.5Te3 Pellets Prepared by Chemical Synthesis. Journal of Electronic Materials, 2012, 41, 1408-1413.	2.2	16
154	Determination of the localization times of electrons and holes in the HgS well in a CdS/HgS/CdS quantum dot–quantum well nanoparticle. Physical Review B, 2002, 66, .	3.2	15
155	Electron-Hole Pair Relaxation Dynamics in Binary Copper-Based Semiconductor Quantum Dots. Journal of the Electrochemical Society, 2005, 152, G427.	2.9	15
156	One- and two-photon induced QD-based energy transfer and the influence of multiple QD excitations. Photochemical and Photobiological Sciences, 2008, 7, 605-613.	2.9	15
157	Photophysics of Silicon Phthalocyanines in Aqueous Media. ChemPhysChem, 2013, 14, 321-330.	2.1	15
158	Laser spectroscopic assessment of a phthalocyanine-sensitized solar cell as a function of dye loading. Solar Energy Materials and Solar Cells, 2014, 126, 155-162.	6.2	15
159	Synthesis and Optical Properties of Linker-Free TiO ₂ /CdSe Nanorods. Journal of Physical Chemistry C, 2014, 118, 3347-3358.	3.1	15
160	Curing of degraded MAPbI ₃ perovskite films. RSC Advances, 2016, 6, 60620-60625.	3.6	15
161	Excitonic Interactions in Bacteriochlorin Homo-Dyads Enable Charge Transfer: A New Approach to the Artificial Photosynthetic Special Pair. Journal of Physical Chemistry B, 2018, 122, 4131-4140.	2.6	15
162	Experimental Evidence for the Photoisomerization of Higher Fullerenes. Journal of the American Chemical Society, 2002, 124, 12400-12401.	13.7	14

#	Article	IF	CITATIONS
163	From nanostructures to porous silicon: sensors and photocatalytic reactors. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, S188-S197.	0.8	14
164	Improvement of the thermoelectric power factor through anisotropic growth of nanostructured PbSe thin films. Dalton Transactions, 2010, 39, 1095-1100.	3.3	14
165	Targeted Chemoradiotherapy of Prostate Cancer Using Gold Nanoclusters with Protease Activatable Monomethyl Auristatin E. ACS Applied Materials & Interfaces, 2022, 14, 14916-14927.	8.0	14
166	A method for separating PEGylated Au nanoparticle ensembles as a function of grafting density and core size. Chemical Communications, 2014, 50, 642-644.	4.1	13
167	Cu–Sb–S Ternary Semiconductor Nanoparticle Plasmonics. Nano Letters, 2021, 21, 2610-2617.	9.1	13
168	Radical Anions of Polyalkylazulenes: An ESR and ENDOR Study. Helvetica Chimica Acta, 1994, 77, 1458-1465.	1.6	12
169	Probing the Spatial Heterogeneity of Carrier Relaxation Dynamics in CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films with Femtosecond Timeâ€Resolved Nonlinear Optical Microscopy. Advanced Optical Materials, 2019, 7, 1901185.	7.3	12
170	Possible formation mechanisms for surface defects observed in heteroepitaxially grown 3C-SiC. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2216-2221.	1.8	11
171	The Quenching of CdSe Quantum Dots Photoluminescence by Gold Nanoparticles in Solution¶. Photochemistry and Photobiology, 2002, 75, 591-597.	2.5	11
172	Influence of a Naphthaldiimide Substituent at the Diimine Ligand on the Photophysics and Reverse Saturable Absorption of Pt ^{II} Diimine Complexes and Cationic Ir ^{III} Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 5241-5253.	2.0	11
173	Phase Transformation and Charge Transfer in Heavily Iron Ion Doped Titanium Oxide and Oxynitride Nanocolloids. Journal of Physical Chemistry C, 2013, 117, 15287-15294.	3.1	10
174	Electrophoretic Interpretation of PEGylated NP Structure with and without Peripheral Charge. Langmuir, 2015, 31, 10246-10253.	3.5	10
175	Complete Conversion of PbI 2 to Methyl Ammonium PbI 3 Improves Perovskite Solar Cell Efficiency. ChemPhysChem, 2017, 18, 47-50.	2.1	10
176	Absence of Dislocation Motion in 3C-SiC pn Diodes under Forward Bias. Materials Science Forum, 2007, 556-557, 223-226.	0.3	9
177	Stable 2D Bisthienoacenes: Synthesis, Crystal Packing, and Photophysical Properties. Chemistry - A European Journal, 2018, 24, 14442-14447.	3.3	9
178	Photoexcited Dynamics in Metal Halide Perovskites: From Relaxation Mechanisms to Applications. Journal of Physical Chemistry C, 2019, 123, 3255-3269.	3.1	9
179	Interactive metal ion–silicon oxidation/reduction processes on fumed silica. RSC Advances, 2012, 2, 10209.	3.6	8
180	Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Physical Chemistry Chemical Physics, 2017, 19, 21407-21413.	2.8	8

#	Article	IF	CITATIONS
181	Interfaces and Interfacial Carrier Dynamics in Perovskites. Journal of Physical Chemistry C, 2021, 125, 15113-15124.	3.1	8
182	Thermal and electrical characterization of nanocomposites for thermoelectrics. , 0, , .		7
183	Femtosecond timeâ€resolved hot carrier energy distributions of photoexcited semiconductor quantum dots. Annalen Der Physik, 2013, 525, 43-48.	2.4	7
184	Combination of Optical and Electrical Loss Analyses for a Si-Phthalocyanine Dye-Sensitized Solar Cell. Journal of Physical Chemistry B, 2014, 118, 14027-14036.	2.6	7
185	Synthesis of ALD Tungsten Trioxide Thin Films from W(CO) ₆ and H ₂ O Precursors. ECS Transactions, 2015, 69, 199-209.	0.5	7
186	Directional Damping of Plasmons at Metal–Semiconductor Interfaces. Accounts of Chemical Research, 2022, 55, 1845-1856.	15.6	7
187	Effect of the erbium dopant architecture on the femtosecond relaxation dynamics of silicon nanocrystals. Journal of Chemical Physics, 2004, 120, 8716-8723.	3.0	6
188	Nanoparticles for Photodynamic Therapy. , 2011, , 1-28.		6
189	Optical and electronic loss analysis of mesoporous solar cells. Semiconductor Science and Technology, 2016, 31, 073001.	2.0	6
190	Photoinduced Homolytic Bond Cleavage of the Central Si–C Bond in Porphyrin Macrocycles Is a Charge Polarization Driven Process. Journal of Physical Chemistry A, 2016, 120, 7634-7640.	2.5	6
191	Temperature-Dependent Thermal Conductivity Study of MAPbl ₃ : Using Mild Aging To Reach a Thermal Percolation Threshold for Greatly Improved Heat Transport. Journal of Physical Chemistry C, 2018, 122, 13243-13249.	3.1	6
192	Magnetic-plasmonic properties of CoFe2O4@Au nanocomposite. Journal of Physics and Chemistry of Solids, 2022, 164, 110630.	4.0	6
193	Novel TiO2 Nanocatalysts for Wastewater Purification-Tapping Energy from the Sun. Water Practice and Technology, 2006, 1, .	2.0	5
194	Gold Nanoparticle-Based Fluorescent Theranostics for Real-Time Image-Guided Assessment of DNA Damage and Repair. International Journal of Molecular Sciences, 2019, 20, 471.	4.1	5
195	Halide exchange studies of novel Pd(<scp>ii</scp>) NNN-pincer complexes. RSC Advances, 2019, 9, 25703-25711.	3.6	4
196	Synthesis and Characterization of Nitrogen-doped SnO2 and Comparison to Nitrogen-doped CeO2 Nanoparticles for Visible-light Applications. ECS Transactions, 2009, 16, 67-77.	0.5	3
197	Comparing Titaniaâ€Based Architectures for Perovskite Solar Cells: A Combined Optical–Electronic Loss Analysis. Small Methods, 2018, 2, 1700275.	8.6	3
198	Tuning two-electron transfer in terpyridine-based platinum(ii) pincer complexes. RSC Advances, 2019, 9, 21116-21124.	3.6	3

#	Article	IF	CITATIONS
199	Visualizing the impact of chloride addition on the microscopic carrier dynamics of MAPbI3 thin films using femtosecond transient absorption microscopy. Journal of Chemical Physics, 2019, 151, 234710.	3.0	3
200	Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale ChemInform, 2004, 35, no.	0.0	2
201	Comparison of the femtosecond time-resolved excited state dynamics in copper oxide and copper sulfide quantum dots. , 2004, , .		2
202	Femtosecond Interfacial Electron Transfer Dynamics of CdSe Semiconductor Nanoparticles. Materials Research Society Symposia Proceedings, 1998, 536, 419.	0.1	2
203	Special Section Guest Editorial: Advanced Materials and Devices for Solar Driven Liquid Fuel and Hydrogen Production. Journal of Photonics for Energy, 2020, 10, 1.	1.3	2
204	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie, 0, , .	2.0	2
205	Novel nanosystems enabling near IR multimodal imaging. , 2005, 5929, 63.		1
206	Copper Oxide Nanocrystals ChemInform, 2005, 36, no.	0.0	1
207	Evaluation of quantum dots for photodynamic therapy (Invited Paper). , 2005, , .		1
208	Noncovalent Intracellular Drug Delivery of Hydrophobic Drugs on Au NPs. Methods in Molecular Biology, 2013, 1025, 251-260.	0.9	1
209	Thermal Stress Induced Void Formation in Semiconductor Interconnect. , 2002, , .		0
210	Highly Efficient Formation of TiO2-XNX–Based Photocatalysts - Potential Applications For Active Sites in Microreactors, Sensors, and Photovoltaics. Materials Research Society Symposia Proceedings, 2003, 789, 133.	0.1	0
211	Considerations on the role of cardiolipin in cellular responses to PDT. , 2004, 5315, 9.		0
212	Synthesis and characterization of novel nanostructured thermoelectric materials. , 2005, 5929, 243.		0
213	PbTe Nanorods by Sonoelectrochemistry ChemInform, 2005, 36, no.	0.0	0