
Daniele Visioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy – PartÂ1: Intercomparison of modal and sectional aerosol modules. Atmospheric Chemistry and Physics, 2022, 22, 93-118.	1.9	12
2	How large is the design space for stratospheric aerosol geoengineering?. Earth System Dynamics, 2022, 13, 201-217.	2.7	10
3	Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations. Atmospheric Chemistry and Physics, 2022, 22, 1739-1756.	1.9	6
4	An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO ₂ or accumulation-mode sulfuric acid aerosols. Atmospheric Chemistry and Physics, 2022, 22, 2955-2973.	1.9	13
5	Future Geoengineering Scenarios: Balancing Policy Relevance and Scientific Significance. Bulletin of the American Meteorological Society, 2022, 103, E817-E820.	1.7	2
6	The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment. Atmospheric Chemistry and Physics, 2022, 22, 2999-3016.	1.9	15
7	Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations. Atmospheric Chemistry and Physics, 2022, 22, 4557-4579.	1.9	19
8	Changes in Hadley circulation and intertropical convergence zone under strategic stratospheric aerosol geoengineering. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	14
9	An approach to sulfate geoengineering with surface emissions of carbonyl sulfide. Atmospheric Chemistry and Physics, 2022, 22, 5757-5773.	1.9	4
10	The Overlooked Role of the Stratosphere Under a Solar Constant Reduction. Geophysical Research Letters, 2022, 49, .	1.5	4
11	From moral hazard to risk-response feedback. Climate Risk Management, 2021, 33, 100324.	1.5	18
12	Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2021, 21, 4231-4247.	1.9	22
13	ls Turning Down the Sun a Good Proxy for Stratospheric Sulfate Geoengineering?. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033952.	1.2	33
14	Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
15	Highâ€Latitude Stratospheric Aerosol Geoengineering Can Be More Effective if Injection Is Limited to Spring. Geophysical Research Letters, 2021, 48, e2021GL092696.	1.5	26
16	Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species. Atmospheric Chemistry and Physics, 2021, 21, 8615-8635.	1.9	14
17	Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations. Atmospheric Chemistry and Physics, 2021, 21, 10039-10063.	1.9	45
18	Sensitivity of Total Column Ozone to Stratospheric Sulfur Injection Strategies. Geophysical Research Letters, 2021, 48, e2021GL094058.	1.5	13

DANIELE VISIONI

#	Article	IF	CITATIONS
19	Detection of pre-industrial societies on exoplanets. International Journal of Astrobiology, 2021, 20, 73-80.	0.9	2
20	Detection of pre-industrial societies on exoplanets – ERRATUM. International Journal of Astrobiology, 2021, 20, 445-445.	0.9	0
21	Reduced Poleward Transport Due to Stratospheric Heating Under Stratospheric Aerosols Geoengineering. Geophysical Research Letters, 2020, 47, e2020GL089470.	1.5	32
22	Seasonally Modulated Stratospheric Aerosol Geoengineering Alters the Climate Outcomes. Geophysical Research Letters, 2020, 47, e2020GL088337.	1.5	27
23	What goes up must come down: impacts of deposition in a sulfate geoengineering scenario. Environmental Research Letters, 2020, 15, 094063.	2.2	15
24	Expanding the design space of stratospheric aerosol geoengineering to include precipitation-based objectives and explore trade-offs. Earth System Dynamics, 2020, 11, 1051-1072.	2.7	22
25	Ultraviolet Radiation modelling using output from the Chemistry Climate Model Initiative. , 2019, 19, 10087-10110.		5
26	Seasonal Injection Strategies for Stratospheric Aerosol Geoengineering. Geophysical Research Letters, 2019, 46, 7790-7799.	1.5	29
27	Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative. Atmospheric Chemistry and Physics, 2019, 19, 10087-10110.	1.9	22
28	The influence of mixing on the stratospheric age of air changes in the 21st century. Atmospheric Chemistry and Physics, 2019, 19, 921-940.	1.9	29
29	The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models. Atmospheric Chemistry and Physics, 2019, 19, 11559-11586.	1.9	27
30	Stratospheric Sulfate Aerosol Geoengineering Could Alter the High‣atitude Seasonal Cycle. Geophysical Research Letters, 2019, 46, 14153-14163.	1.5	40
31	Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature Communications, 2018, 9, 206.	5.8	69
32	Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmospheric Chemistry and Physics, 2018, 18, 1091-1114.	1.9	56
33	Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols. Atmospheric Chemistry and Physics, 2018, 18, 2787-2808.	1.9	33
34	Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model. Atmospheric Chemistry and Physics, 2018, 18, 16155-16172.	1.9	27
35	Upper tropospheric ice sensitivity to sulfate geoengineering. Atmospheric Chemistry and Physics, 2018, 18, 14867-14887.	1.9	25
36	Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations. Atmospheric Chemistry and Physics, 2018, 18, 7217-7235.	1.9	32

DANIELE VISIONI

#	Article	IF	CITATIONS
37	Stratospheric Injection of Brominated Very Shortâ€Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5690-5719.	1.2	36
38	Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.	1.9	128
39	Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models. Atmospheric Chemistry and Physics, 2018, 18, 6699-6720.	1.9	32
40	Revisiting the Mystery of Recent Stratospheric Temperature Trends. Geophysical Research Letters, 2018, 45, 9919-9933.	1.5	51
41	Deriving Global OH Abundance and Atmospheric Lifetimes for Longâ€Lived Gases: A Search for CH ₃ CCl ₃ Alternatives. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,914.	1.2	26
42	Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2017, 17, 11209-11226.	1.9	28
43	Sulfate geoengineering: aÂreview of the factors controlling the needed injection of sulfur dioxide. Atmospheric Chemistry and Physics, 2017, 17, 3879-3889.	1.9	44
44	Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species. Atmosphere, 2016, 7, 149.	1.0	20
45	Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time. Atmosphere, 2016, 7, 75.	1.0	36
46	Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere. Atmosphere, 2016, 7, 85.	1.0	17