List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909113/publications.pdf Version: 2024-02-01

Su Cuo

#	Article	IF	CITATIONS
1	Colocalization Analysis for Cryosectioned and Immunostained Tissue Samples with or without Label Retention Expansion Microscopy (LR-ExM) by JACoP. Bio-protocol, 2022, 12, e4336.	0.4	3
2	The psychoactive effects of Bryophyllum pinnatum (Lam.) Oken leaves in young zebrafish. PLoS ONE, 2022, 17, e0264987.	2.5	5
3	In Vivo Dopamine Neuron Imaging-Based Small Molecule Screen Identifies Novel Neuroprotective Compounds and Targets. Frontiers in Pharmacology, 2022, 13, 837756.	3.5	4
4	High activity and high functional connectivity are mutually exclusive in resting state zebrafish and human brains. BMC Biology, 2022, 20, 84.	3.8	2
5	Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Molecular Psychiatry, 2022, 27, 3777-3793.	7.9	7
6	Polarized endosome dynamics engage cytoplasmic Par-3 that recruits dynein during asymmetric cell division. Science Advances, 2021, 7, .	10.3	10
7	Larval zebrafish display dynamic learning of aversive stimuli in a constant visual surrounding. Learning and Memory, 2021, 28, 228-238.	1.3	5
8	THC-induced behavioral stereotypy in zebrafish as a model of psychosis-like behavior. Scientific Reports, 2021, 11, 15693.	3.3	5
9	A zebrafish screen reveals Renin-angiotensin system inhibitors as neuroprotective via mitochondrial restoration in dopamine neurons. ELife, 2021, 10, .	6.0	21
10	Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 169.	5.2	28
11	The effect of renin–angiotensin–aldosterone system inhibitors on organ-specific ace2 expression in zebrafish and its implications for COVID-19. Scientific Reports, 2021, 11, 23670.	3.3	6
12	Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells, 2020, 9, 1714.	4.1	17
13	Multiple convergent hypothalamus–brainstem circuits drive defensive behavior. Nature Neuroscience, 2020, 23, 959-967.	14.8	66
14	Molecular genetic approaches to dissect complex behaviors in zebrafish. , 2020, , 223-244.		2
15	Transfection of exogenous DNA complexed to cationic dendrimer induces alterations of bovine sperm microRNAome. Theriogenology, 2020, 156, 11-19.	2.1	3
16	Mechanisms Linking Mitochondrial Dysfunction and Proteostasis Failure. Trends in Cell Biology, 2020, 30, 317-328.	7.9	27
17	Existence and functions of a kisspeptin neuropeptide signaling system in a non-chordate deuterostome species. ELife, 2020, 9, .	6.0	14
18	Heritable natural variation of light/dark preference in an outbred zebrafish population. Journal of Neurogenetics, 2019, 33, 199-208.	1.4	6

#	Article	IF	CITATIONS
19	Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chemical Biology, 2019, 26, 674-685.e6.	5.2	41
20	Systematic Screens in Zebrafish Shed Light on Cellular and Molecular Mechanisms of Complex Brain Phenotypes. , 2018, , 385-400.		1
21	A novel <i>PRRT2</i> pathogenic variant in a family with paroxysmal kinesigenic dyskinesia and benign familial infantile seizures. Journal of Physical Education and Sports Management, 2018, 4, a002287.	1.2	9
22	Antibody Uptake Assay in the Embryonic Zebrafish Forebrain to Study Notch Signaling Dynamics in Neural Progenitor Cells In Vivo. Methods in Molecular Biology, 2017, 1576, 273-281.	0.9	3
23	Role of the endocannabinoid system in vertebrates: Emphasis on the zebrafish model. Development Growth and Differentiation, 2017, 59, 194-210.	1.5	53
24	Zebrafish: from genes and neurons to circuits, behavior and disease. Journal of Neurogenetics, 2017, 31, 59-60.	1.4	2
25	Heritable natural variation of an anxiety-like behavior in larval zebrafish. Journal of Neurogenetics, 2017, 31, 138-148.	1.4	13
26	MicroRNA-133b Negatively Regulates Zebrafish Single Mauthner-Cell Axon Regeneration through Targeting tppp3 in Vivo. Frontiers in Molecular Neuroscience, 2017, 10, 375.	2.9	22
27	Rational design of a monomeric and photostable far-red fluorescent protein for fluorescence imaging <i>in vivo</i> . Protein Science, 2016, 25, 308-315.	7.6	27
28	Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neuroscience, 2016, 17, 63.	1.9	79
29	A High-Content Larval Zebrafish Brain Imaging Method for Small Molecule Drug Discovery. PLoS ONE, 2016, 11, e0164645.	2.5	9
30	PINK1 and Parkin Control Localized Translation of Respiratory Chain Component mRNAs on Mitochondria Outer Membrane. Cell Metabolism, 2015, 21, 95-108.	16.2	175
31	Heterogeneously Expressed <i>fezf2</i> Patterns Gradient Notch Activity in Balancing the Quiescence, Proliferation, and Differentiation of Adult Neural Stem Cells. Journal of Neuroscience, 2014, 34, 13911-13923.	3.6	27
32	Synergistic contribution of SMAD signaling blockade and high localized cell density in the differentiation of neuroectoderm from H9 cells. Biochemical and Biophysical Research Communications, 2014, 452, 895-900.	2.1	7
33	Stable Gene Silencing in Zebrafish with Spatiotemporally Targetable RNA Interference. Genetics, 2013, 193, 1065-1071.	2.9	23
34	Fezf2 Regulates Multilineage Neuronal Differentiation through Activating Basic Helix-Loop-Helix and Homeodomain Genes in the Zebrafish Ventral Forebrain. Journal of Neuroscience, 2012, 32, 10940-10948.	3.6	30
35	Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia. Neuron, 2012, 74, 65-78.	8.1	119
36	Transcriptional Enhancers in Protein-Coding Exons of Vertebrate Developmental Genes. PLoS ONE, 2012, 7, e35202.	2.5	50

#	Article	IF	CITATIONS
37	Zebrafish Chemical Screening Reveals the Impairment of Dopaminergic Neuronal Survival by Cardiac Glycosides. PLoS ONE, 2012, 7, e35645.	2.5	24
38	Toward molecular genetic dissection of neural circuits for emotional and motivational behaviors. Developmental Neurobiology, 2012, 72, 358-365.	3.0	17
39	Preference for ethanol in zebrafish following a single exposure. Behavioural Brain Research, 2011, 217, 128-133.	2.2	71
40	Time-lapse Live Imaging of Clonally Related Neural Progenitor Cells in the Developing Zebrafish Forebrain. Journal of Visualized Experiments, 2011, , .	0.3	8
41	The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Research, 2011, 1381, 95-105.	2.2	223
42	Corticotropin-Releasing Factor Critical for Zebrafish Camouflage Behavior Is Regulated by Light and Sensitive to Ethanol. Journal of Neuroscience, 2011, 31, 214-224.	3.6	40
43	Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2581-2586.	7.1	175
44	Genomic Selection Identifies Vertebrate Transcription Factor Fezf2 Binding Sites and Target Genes. Journal of Biological Chemistry, 2011, 286, 18641-18649.	3.4	18
45	Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiology of Disease, 2010, 40, 66-72.	4.4	115
46	The Importance of Being Cis: Evolution of Orthologous Fish and Mammalian Enhancer Activity. Molecular Biology and Evolution, 2010, 27, 2322-2332.	8.9	47
47	A systematic approach to identify functional motifs within vertebrate developmental enhancers. Developmental Biology, 2010, 337, 484-495.	2.0	64
48	Repression of RNA Polymerase II Elongation In Vivo Is Critically Dependent on the C-Terminus of Spt5. PLoS ONE, 2009, 4, e6918.	2.5	24
49	Using zebrafish to assess the impact of drugs on neural development and function. Expert Opinion on Drug Discovery, 2009, 4, 715-726.	5.0	134
50	Ethanol-Modulated Camouflage Response Screen in Zebrafish Uncovers a Novel Role for cAMP and Extracellular Signal-Regulated Kinase Signaling in Behavioral Sensitivity to Ethanol. Journal of Neuroscience, 2009, 29, 8408-8418.	3.6	53
51	fezf2 expression delineates cells with proliferative potential and expressing markers of neural stem cells in the adult zebrafish brain. Gene Expression Patterns, 2009, 9, 411-422.	0.8	24
52	Animal Models for Anxiety Disorders. , 2008, , 203-216.		1
53	cneViewer: a database of conserved non-coding elements for studies of tissue-specific gene regulation. Bioinformatics, 2008, 24, 2418-2419.	4.1	16
54	ldentification of Spt5 Target Genes in Zebrafish Development Reveals Its Dual Activity In Vivo. PLoS ONE, 2008, 3, e3621.	2.5	34

#	Article	IF	CITATIONS
55	Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl. Development (Cambridge), 2007, 134, 127-136.	2.5	73
56	Neurogenin1 is a determinant of zebrafish basal forebrain dopaminergic neurons and is regulated by the conserved zinc finger protein Tof/Fezl. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5143-5148.	7.1	78
57	Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicology and Teratology, 2004, 26, 857-864.	2.4	253
58	Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacology Biochemistry and Behavior, 2004, 77, 647-654.	2.9	198
59	A regulator of transcriptional elongation controls vertebrate neuronal development. Nature, 2000, 408, 366-369.	27.8	153
60	Development of Noradrenergic Neurons in the Zebrafish Hindbrain Requires BMP, FGF8, and the Homeodomain Protein Soulless/Phox2a. Neuron, 1999, 24, 555-566.	8.1	207
61	Mutations in the Zebrafish Unmask Shared Regulatory Pathways Controlling the Development of Catecholaminergic Neurons. Developmental Biology, 1999, 208, 473-487.	2.0	200
62	Chapter 2.1.8 Mutagenesis in zebra fish: studying the brain dopamine systems. Handbook of Behavioral Neuroscience, 1999, , 166-176.	0.0	5
63	Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Current Opinion in Genetics and Development, 1996, 6, 408-415.	3.3	142
64	par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81, 611-620.	28.9	999
65	Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell, 1995, 83, 743-752.	28.9	387
66	Autism-Risk Gene necab2 Regulates Psychomotor and Social Behavior as a Neuronal Modulator of mGluR1 Signaling. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	2