
Hyun-Dong Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5908847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic Control of the foxp3 Locus in Regulatory T Cells. PLoS Biology, 2007, 5, e38.	5.6	1,068
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
3	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
4	The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nature Immunology, 2010, 11, 1057-1062.	14.5	304
5	1,25â€dihydroxyvitamin D ₃ promotes ILâ€10 production in human B cells. European Journal of Immunology, 2008, 38, 2210-2218.	2.9	277
6	Human Cytomegalovirus Drives Epigenetic Imprinting of the IFNG Locus in NKG2Chi Natural Killer Cells. PLoS Pathogens, 2014, 10, e1004441.	4.7	224
7	IL-17 and GM-CSF Expression Are Antagonistically Regulated by Human T Helper Cells. Science Translational Medicine, 2014, 6, 241ra80.	12.4	205
8	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198
9	Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development. Immunity, 2016, 45, 1148-1161.	14.3	174
10	Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9229-9234.	7.1	154
11	SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nature Communications, 2021, 12, 1961.	12.8	145
12	IFNâ€Î³ and ILâ€12 synergize to convert <i>in vivo</i> generated Th17 into Th1/Th17 cells. European Journal of Immunology, 2010, 40, 3017-3027.	2.9	143
13	c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nature Immunology, 2019, 20, 471-481.	14.5	138
14	Th memory for interleukinâ€17 expression is stable <i>in vivo</i> . European Journal of Immunology, 2008, 38, 2654-2664.	2.9	135
15	Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells. European Journal of Immunology, 2014, 44, 2306-2317.	2.9	110
16	Leptin: A Critical Regulator of CD4+ T-cell Polarization in Vitro and in Vivo. Endocrinology, 2010, 151, 56-62.	2.8	106
17	Expression of IL-10 in Th memory lymphocytes is conditional on IL-12 or IL-4, unless the IL-10 gene is imprinted by GATA-3. European Journal of Immunology, 2007, 37, 807-817.	2.9	104
18	Autocrine ILâ€10 promotes human Bâ€cell differentiation into IgM―or IgGâ€secreting plasmablasts. European Journal of Immunology, 2014, 44, 1615-1621.	2.9	98

#	Article	IF	CITATIONS
19	Memory CD8 ⁺ TÂcells colocalize with ILâ€7 ⁺ stromal cells in bone marrow and rest in terms of proliferation and transcription. European Journal of Immunology, 2015, 45, 975-987.	2.9	97
20	Autoregulation of Th1-mediated inflammation by <i>twist1 </i> . Journal of Experimental Medicine, 2008, 205, 1889-1901.	8.5	96
21	<scp>NK</scp> cells gain higher <scp>IFN</scp> â€Î³ competence during terminal differentiation. European Journal of Immunology, 2014, 44, 2074-2084.	2.9	94
22	Demethylation of the <i>RORC2</i> and <i>IL17A</i> in Human CD4+ T Lymphocytes Defines Th17 Origin of Nonclassic Th1 Cells. Journal of Immunology, 2015, 194, 3116-3126.	0.8	79
23	Distinct immune effector pathways contribute to the full expression of peanut-induced anaphylactic reactions in mice. Journal of Allergy and Clinical Immunology, 2011, 127, 1552-1561.e1.	2.9	77
24	Immunological memories of the bone marrow. Immunological Reviews, 2018, 283, 86-98.	6.0	74
25	Persistence of effector memory Th1 cells is regulated by <i>Hopx</i> . European Journal of Immunology, 2010, 40, 2993-3006.	2.9	70
26	Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nature Communications, 2017, 8, 2153.	12.8	67
27	A Critical Control Element for Interleukin-4 Memory Expression in T Helper Lymphocytes. Journal of Biological Chemistry, 2005, 280, 28177-28185.	3.4	65
28	<i>Eomes</i> controls the development of Th17â€derived (nonâ€classic) Th1 cells during chronic inflammation. European Journal of Immunology, 2019, 49, 79-95.	2.9	64
29	Organization and maintenance of immunological memory by stroma niches. European Journal of Immunology, 2009, 39, 2095-2099.	2.9	61
30	IL-1β and TGF-β Act Antagonistically in Induction and Differentially in Propagation of Human Proinflammatory Precursor CD4+ T Cells. Journal of Immunology, 2011, 187, 5627-5635.	0.8	59
31	Nitric oxide enhances Th9 cell differentiation and airway inflammation. Nature Communications, 2014, 5, 4575.	12.8	59
32	Specific microbiota enhances intestinal IgA levels by inducing TGFâ€Î² in T follicular helper cells of Peyer's patches in mice. European Journal of Immunology, 2020, 50, 783-794.	2.9	58
33	Highâ€resolution microbiota flow cytometry reveals dynamic colitisâ€associated changes in fecal bacterial composition. European Journal of Immunology, 2016, 46, 1300-1303.	2.9	57
34	miRâ€148a is upregulated by Twist1 and Tâ€bet and promotes Th1â€cell survival by regulating the proapoptotic gene Bim. European Journal of Immunology, 2015, 45, 1192-1205.	2.9	56
35	Discrete populations of isotype-switched memory B lymphocytes are maintained in murine spleen and bone marrow. Nature Communications, 2020, 11, 2570.	12.8	54
36	Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11chigh dendritic cells. European Journal of Immunology, 2006, 36, 2912-2919.	2.9	52

#	Article	IF	CITATIONS
37	IL-10 Is Excluded from the Functional Cytokine Memory of Human CD4+ Memory T Lymphocytes. Journal of Immunology, 2007, 179, 2389-2396.	0.8	51
38	Loss of methylation at the <i><scp>IFNG</scp></i> promoter and <scp>CNS</scp> â€1 is associated with the development of functional <scp>IFN</scp> â€i³ memory in human <scp>CD</scp> 4 ⁺ <scp>T</scp> lymphocytes. European Journal of Immunology, 2013, 43, 793-804.	2.9	44
39	Stromal Cell-Contact Dependent PI3K and APRIL Induced NF-ήB Signaling Prevent Mitochondrial- and ER Stress Induced Death of Memory Plasma Cells. Cell Reports, 2020, 32, 107982.	6.4	40
40	A long-term perspective on immunity to COVID. Nature, 2021, 595, 359-360.	27.8	40
41	Maintenance of CD8 ⁺ memory T lymphocytes in the spleen but not in the bone marrow is dependent on proliferation. European Journal of Immunology, 2017, 47, 1900-1905.	2.9	33
42	The Pro―and Antiâ€Inflammatory Potential of Interleukinâ€12. Annals of the New York Academy of Sciences, 2007, 1109, 40-46.	3.8	30
43	Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1334-1339.	7.1	30
44	Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs inÂvivo. Journal of Autoimmunity, 2018, 89, 41-52.	6.5	30
45	CD69 ⁺ memory T lymphocytes of the bone marrow and spleen express the signature transcripts of tissueâ€resident memory T lymphocytes. European Journal of Immunology, 2019, 49, 966-968.	2.9	30
46	Nuclear Factor of Activated T Cells Regulates the Expression of Interleukin-4 in Th2 Cells in an All-or-none Fashion. Journal of Biological Chemistry, 2014, 289, 26752-26761.	3.4	29
47	Singleâ€cell transcriptomes of murine bone marrow stromal cells reveal nicheâ€associated heterogeneity. European Journal of Immunology, 2019, 49, 1372-1379.	2.9	28
48	Innate-Like Effector Differentiation of Human Invariant NKT Cells Driven by IL-7. Journal of Immunology, 2008, 180, 4415-4424.	0.8	27
49	Direct uptake of Antagomirs and efficient knockdown of miRNA in primary B and T lymphocytes. Journal of Immunological Methods, 2015, 426, 128-133.	1.4	26
50	Pathogenic memory plasma cells in autoimmunity. Current Opinion in Immunology, 2019, 61, 86-91.	5.5	26
51	Immunological memory in rheumatic inflammation — a roadblock to tolerance induction. Nature Reviews Rheumatology, 2021, 17, 291-305.	8.0	25
52	Antigenâ€driven PDâ€1 ⁺ <i>TOX</i> ⁺ <i>BHLHE40</i> ⁺ and PDâ€1 ⁺ <i>TOX</i> ⁺ <i>EOMES</i> ⁺ T lymphocytes regulate juvenile idiopathic arthritis <i>in situ</i> . European Journal of Immunology, 2021, 51, 915-929.	2.9	24
53	Lymphocyte signaling: regulation of FoxO transcription factors by microRNAs. Annals of the New York Academy of Sciences, 2012, 1247, 46-55.	3.8	23
54	Differential Expression of miRâ€4520a Associated With Pyrin Mutations in Familial Mediterranean Fever (FMF). Journal of Cellular Physiology, 2017, 232, 1326-1336.	4.1	23

#	Article	IF	CITATIONS
55	Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm. Bioinformatics, 2014, 30, 3372-3378.	4.1	22
56	Unbiased transcriptomes of resting human <scp>CD</scp> 4 ⁺ <scp>CD</scp> 45 <scp>RO</scp> ⁺ <scp>T</scp> lymphocytes. European Journal of Immunology, 2014, 44, 1866-1869.	2.9	21
57	Simultaneous inhibition of JAK and SYK kinases ameliorates chronic and destructive arthritis in mice. Arthritis Research and Therapy, 2015, 17, 356.	3.5	21
58	Selection and depletion of plasma cells based on the specificity of the secreted antibody. European Journal of Immunology, 2015, 45, 317-319.	2.9	21
59	Deep phenotypical characterization of human CD3 ⁺ CD56 ⁺ T cells by mass cytometry. European Journal of Immunology, 2021, 51, 672-681.	2.9	21
60	ILâ€10â€producing BÂcells are characterized by a specific methylation signature. European Journal of Immunology, 2019, 49, 1213-1225.	2.9	19
61	Regulation of Fatty Acid Oxidation by Twist 1 in the Metabolic Adaptation of T Helper Lymphocytes to Chronic Inflammation. Arthritis and Rheumatology, 2019, 71, 1756-1765.	5.6	18
62	Maintenance of quiescent immune memory in the bone marrow. European Journal of Immunology, 2021, 51, 1592-1601.	2.9	18
63	T-bet and RORα control lymph node formation by regulating embryonic innate lymphoid cell differentiation. Nature Immunology, 2021, 22, 1231-1244.	14.5	18
64	Authentic IgM Fc Receptor (FcμR). Current Topics in Microbiology and Immunology, 2017, 408, 25-45.	1.1	15
65	Targeting pathogenic T helper cell memory. Annals of the Rheumatic Diseases, 2011, 70, i85-i87.	0.9	14
66	A Ca ²⁺ concentration of 1.5 mM, as present in IMDM but not in RPMI, is critical for maximal response of Th cells to PMA/ionomycin. European Journal of Immunology, 2015, 45, 1270-1273.	2.9	14
67	MicroRNA-31 Reduces the Motility of Proinflammatory T Helper 1 Lymphocytes. Frontiers in Immunology, 2018, 9, 2813.	4.8	13
68	The intestinal microbiota determines the colitisâ€inducing potential of Tâ€betâ€deficient Th cells in mice. European Journal of Immunology, 2018, 48, 161-167.	2.9	11
69	Keeping up with the stress of antibody production: BAFF and APRIL maintain memory plasma cells. Current Opinion in Immunology, 2021, 71, 97-102.	5.5	10
70	Intestinal Microbiome in Hematopoietic Stem Cell Transplantation For Autoimmune Diseases: Considerations and Perspectives on Behalf of Autoimmune Diseases Working Party (ADWP) of the EBMT. Frontiers in Oncology, 2021, 11, 722436.	2.8	6
71	Resident memory CD4 ⁺ T lymphocytes mobilize from bone marrow to contribute to a systemic secondary immune reaction. European Journal of Immunology, 2022, 52, 737-752.	2.9	6
72	Beyond sequencing: fast and easy microbiome profiling by flow cytometry. Archives of Toxicology, 2019, 93, 2703-2704.	4.2	3

#	Article	IF	CITATIONS
73	Flow cytometry can reliably capture gut microbial composition in healthy adults as well as dysbiosis dynamics in patients with aggressive B-cell non-Hodgkin lymphoma. Gut Microbes, 2022, 14, .	9.8	3
74	Circumvention of MHC class II restriction by genetic immunization. Vaccine, 2001, 20, 630-634.	3.8	2
75	Diversity and flexibility of Th17 effector functions. Arthritis Research and Therapy, 2011, 13, 106.	3.5	2
76	Epigenetic Imprinting of Immunological Memory. Epigenetics and Human Health, 2016, , 53-67.	0.2	2
77	Data-Driven Mathematical Model of Apoptosis Regulation in Memory Plasma Cells. Cells, 2022, 11, 1547.	4.1	2
78	The pro- and anti-inflammatory potential of IL-12: the dual role of Th1 cells. Expert Review of Clinical Immunology, 2007, 3, 709-719.	3.0	1
79	Quantifying Antigen-Specific T-Cells by Assessing Their Antigen-Induced Proliferation. Methods in Molecular Biology, 2021, 2285, 131-139.	0.9	0
80	Flow Cytometric Analysis of Microbial Diversity in Patients with Aggressive Lymphoma Disease Undergoing Chemoimmunotherapy. Blood, 2021, 138, 4005-4005.	1.4	0