
Elena Monte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5908590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. New Phytologist, 2022, 234, 93-106.	7.3	20
2	The Sequential Action of MIDA9/PP2C.D1, PP2C.D2, and PP2C.D5 Is Necessary to Form and Maintain the Hook After Germination in the Dark. Frontiers in Plant Science, 2021, 12, 636098.	3.6	2
3	GENOMES UNCOUPLED1-independent retrograde signaling targets the ethylene pathway to repress photomorphogenesis. Plant Physiology, 2021, 185, 67-76.	4.8	8
4	The International Symposium on Plant Photobiology 2019: a bright and colourful experience. Physiologia Plantarum, 2020, 169, 297-300.	5.2	0
5	Red and blue light differentially impact retrograde signalling and photoprotection in rice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190402.	4.0	10
6	The photoperiodic response of hypocotyl elongation involves regulation of CDF1 and CDF5 activity. Physiologia Plantarum, 2020, 169, 480-490.	5.2	18
7	Phytochromeâ€imposed inhibition of <scp>PIF7</scp> activity shapes photoperiodic growth in <i>Arabidopsis</i> together with <scp>PIF1</scp> , 3, 4 and 5. Physiologia Plantarum, 2020, 169, 452-466.	5.2	20
8	Plant Biology: AHL Transcription Factors Inhibit Growth-Promoting PIFs. Current Biology, 2020, 30, R354-R356.	3.9	1
9	Extrachloroplastic PP7L Functions in Chloroplast Development and Abiotic Stress Tolerance. Plant Physiology, 2019, 180, 323-341.	4.8	30
10	Circadian Waves of Transcriptional Repression Shape PIF-Regulated Photoperiod-Responsive Growth in Arabidopsis. Current Biology, 2018, 28, 311-318.e5.	3.9	93
11	Seedling Establishment: A Dimmer Switch-Regulated Process between Dark and Light Signaling. Plant Physiology, 2018, 176, 1061-1074.	4.8	124
12	Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes. Frontiers in Plant Science, 2016, 7, 962.	3.6	7
13	Molecular convergence of clock and photosensory pathways through PIF3–TOC1 interaction and co-occupancy of target promoters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4870-4875.	7.1	115
14	Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nature Communications, 2016, 7, 11431.	12.8	144
15	PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5. Journal of Experimental Botany, 2014, 65, 2925-2936.	4.8	46
16	PIFs: Systems Integrators in Plant Development. Plant Cell, 2014, 26, 56-78.	6.6	472
17	Comparative functional analysis of fullâ€length and Nâ€terminal fragments of phytochrome C, D and E in red lightâ€induced signaling. New Phytologist, 2013, 200, 86-96.	7.3	25
18	Branching of the PIF3 regulatory network in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 510-513.	2.4	3

Elena Monte

#	Article	IF	CITATIONS
19	Phytochrome Signaling in Green Arabidopsis Seedlings: Impact Assessment of a Mutually Negative phyB–PIF Feedback Loop. Molecular Plant, 2012, 5, 734-749.	8.3	80
20	Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1398-1419.	6.6	199
21	Phytochromeâ€imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant Journal, 2012, 71, 390-401.	5.7	110
22	Functional Profiling Identifies Genes Involved in Organ-Specific Branches of the PIF3 Regulatory Network in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 3974-3991.	6.6	44
23	Definition of Early Transcriptional Circuitry Involved in Light-Induced Reversal of PIF-Imposed Repression of Photomorphogenesis in Young <i>Arabidopsis</i> Seedlings. Plant Cell, 2009, 21, 3535-3553.	6.6	253
24	Multiple Phytochrome-Interacting bHLH Transcription Factors Repress Premature Seedling Photomorphogenesis in Darkness. Current Biology, 2008, 18, 1815-1823.	3.9	513
25	The <i>Arabidopsis</i> Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels. Plant Cell, 2008, 20, 337-352.	6.6	334
26	Mechanistic duality of transcription factor function in phytochrome signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2232-2237.	7.1	105
27	Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling. Journal of Experimental Botany, 2007, 58, 3125-3133.	4.8	66
28	The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16091-16098.	7.1	275
29	Isolation and Characterization of phyC Mutants in Arabidopsis Reveals Complex Crosstalk between Phytochrome Signaling Pathways. Plant Cell, 2003, 15, 1962-1980.	6.6	190
30	Gibberellins Signal Nuclear Import of PHOR1, a Photoperiod-Responsive Protein with Homology to Drosophila armadillo. Cell, 2001, 106, 343-354.	28.9	159
31	Leaf C40.4: a carotenoid-associated protein involved in the modulation of photosynthetic efficiency?. Plant Journal, 1999, 19, 399-410.	5.7	49
32	A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant Journal, 1999, 20, 251-257.	5.7	172
33	Cloning and expression analysis of a gene that shows developmental regulation upon tuberization in potato. Plant Molecular Biology, 1997, 33, 169-174.	3.9	5