Nissrine El Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5908573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimized conditions for reduction of iron (III) oxide into metallic form under hydrogen atmosphere: A thermodynamic approach. Chemical Engineering Science, 2022, 252, 117297.	1.9	9
2	Carbon Dioxide Reforming of Methane over Nickel-Supported Zeolites: A Screening Study. Processes, 2022, 10, 1331.	1.3	4
3	One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming. Applied Catalysis B: Environmental, 2021, 280, 119417.	10.8	69
4	Supported Nickel Nanocatalysts for the Dry Reforming of Methane: Effect of SBA-15's Pore Sizes on the Catalytic Performances of Nickel Nanoparticles. , 2021, , 113-126.		3
5	Mesoporous nickel-alumina catalysts derived from MIL-53(Al) metal-organic framework: A new promising path for synthesizing CO2 methanation catalysts. Journal of CO2 Utilization, 2021, 51, 101651.	3.3	20
6	PET waste as organic linker source for the sustainable preparation of MOF-derived methane dry reforming catalysts. Materials Advances, 2021, 2, 2750-2758.	2.6	20
7	Optimization of Synthesis Conditions of Ni/SBA-15 Catalysts: Confined Nanoparticles and Improved Stability in Dry Reforming of Methane. Catalysts, 2021, 11, 44.	1.6	11
8	Porous Nickelâ€Alumina Derived from Metalâ€Organic Framework (MILâ€53): A New Approach to Achieve Active and Stable Catalysts in Methane Dry Reforming. ChemCatChem, 2020, 12, 373-385.	1.8	38
9	Comprehensive study on the effect of magnesium loading over nickel-ordered mesoporous alumina for dry reforming of methane. Energy Conversion and Management, 2020, 225, 113470.	4.4	38
10	Investigation of new routes for the preparation of mesoporous calcium oxide supported nickel materials used as catalysts for the methane dry reforming reaction. Catalysis Science and Technology, 2020, 10, 6910-6922.	2.1	5
11	Assessing the potential of xNi-yMg-Al2O3 catalysts prepared by EISA-one-pot synthesis towards CO2 methanation: An overall study. International Journal of Hydrogen Energy, 2020, 45, 28626-28639.	3.8	17
12	Aqueous nickel(II) hydroxycarbonate instead of nickel(0) colloids as precursors of stable Ni-silica based catalysts for the dry reforming of methane. Catalysis Communications, 2020, 138, 105953.	1.6	8
13	Ordered mesoporous Fe-Al2O3 based-catalysts synthesized via a direct "one-pot" method for the dry reforming of a model biogas mixture. International Journal of Hydrogen Energy, 2019, 44, 14889-14907.	3.8	30
14	Nanostructured Nickel Aluminate as a Key Intermediate for the Production of Highly Dispersed and Stable Nickel Nanoparticles Supported within Mesoporous Alumina for Dry Reforming of Methane. Molecules, 2019, 24, 4107.	1.7	25
15	Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). Journal of CO2 Utilization, 2018, 24, 112-119.	3.3	25
16	Influence of synthesis parameters of mesocellular silica foams doped by nickel on methane reforming by CO ₂ . MATEC Web of Conferences, 2018, 171, 03002.	0.1	2
17	Effect of pore geometry of mesoporous supports on catalytic performances in methane reforming. MATEC Web of Conferences, 2018, 171, 01003.	0.1	3
18	Influence of the swelling agents of siliceous mesocellular foams on the performances of Ni-based methane dry reforming catalysts. International Journal of Hydrogen Energy, 2018, 43, 17205-17215.	3.8	12

NISSRINE EL HASSAN

#	Article	IF	CITATIONS
19	Advantages of mesoporous silica based catalysts in methane reforming by CO2 from kinetic perspective. Journal of Environmental Chemical Engineering, 2018, 6, 4289-4297.	3.3	17
20	Tuning the properties of nickel nanoparticles inside SBA-15 mesopores for enhanced stability in methane reforming. Journal of CO2 Utilization, 2017, 17, 119-124.	3.3	38
21	Ordered mesoporous "one-pot―synthesized Ni-Mg(Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). Applied Catalysis B: Environmental, 2017, 201, 527-542.	10.8	125
22	Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15. Applied Catalysis A: General, 2016, 520, 114-121.	2.2	110
23	Factors affecting the long-term stability of mesoporous nickel-based catalysts in combined steam and dry reforming of methane. Catalysis Science and Technology, 2016, 6, 4616-4631.	2.1	65
24	Highly active and stable Ni/SBA-15 catalysts prepared by a "two solvents―method for dry reforming of methane. Microporous and Mesoporous Materials, 2016, 220, 99-109.	2.2	92
25	Compared activity and stability of three Ni-silica catalysts for methane bi- and dry reforming. , 2015, , .		1
26	Comparison of effects of La, Mg and Rh addition on the activity and stability of Ni/SiO <inf>2</inf> catalysts in dry reforming of methane at low temperature. , 2015, , .		0
27	Rh-Ni/SBA-15 prepared by two solvents method as stable catalysts for the dry reforming of methane at high pressure. , 2015, , .		1
28	Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie, 2015, 18, 293-301.	0.2	55
29	Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane. Chemical Engineering Journal, 2015, 264, 351-358.	6.6	52
30	Activity of Highly Dispersed Co/SBA-15 Catalysts (Low Content) in Carbon Black Oxidation. Physics Procedia, 2014, 55, 231-236.	1.2	2
31	Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane. International Journal of Hydrogen Energy, 2014, 39, 7780-7787.	3.8	65
32	Oxidation of carbon black, propene and toluene on highly reducible Co/SBA-15 catalysts. Comptes Rendus Chimie, 2014, 17, 913-919.	0.2	7
33	A review of dry (CO ₂) reforming of methane over noble metal catalysts. Chemical Society Reviews, 2014, 43, 7813-7837.	18.7	1,616
34	Methane activation by NO2 on Co loaded SBA-15 catalysts: The effect of mesopores (length, diameter) on the catalytic activity. Catalysis Today, 2008, 137, 191-196.	2.2	12
35	Accessibility of Co3O4 particles patterned in SBA-15. Studies in Surface Science and Catalysis, 2007, 170, 1213-1221.	1.5	1
36	"Nanocastingâ€ : Using SBA-15 Silicas as Hard Templates to Obtain Ultrasmall Monodispersed γ-Fe2O3Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 26001-26011.	1.2	102

#	Article	IF	CITATIONS
37	Preparation of Supported Gold Nanoparticles by a Modified Incipient Wetness Impregnation Method. Journal of Physical Chemistry B, 2006, 110, 22471-22478.	1.2	137
38	Size-Induced Structural Modifications Affecting Co3O4Nanoparticles Patterned in SBA-15 Silicas. Chemistry of Materials, 2006, 18, 5826-5828.	3.2	144