Rashi Gusain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5908485/publications.pdf

Version: 2024-02-01

46 papers 3,082 citations

236925 25 h-index 33 g-index

50 all docs

50 docs citations

50 times ranked

3241 citing authors

#	Article	IF	CITATIONS
1	MoS ₂ Nanosheet/ZnS Composites for the Visible-Light-Assisted Photocatalytic Degradation of Oxytetracycline. ACS Applied Nano Materials, 2021, 4, 4721-4734.	5.0	61
2	Bismuth Molybdate Nanoplates Supported on Reduced Graphene Oxide: An Effective Nanocomposite for the Removal of Naphthalene via Adsorption–Photodegradation. ACS Omega, 2021, 6, 16783-16794.	3.5	22
3	Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coordination Chemistry Reviews, 2021, 445, 214100.	18.8	131
4	Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite. Journal of Industrial and Engineering Chemistry, 2020, 81, 393-404.	5.8	89
5	Fatty acid-derived ionic liquids as renewable lubricant additives: Effect of chain length and unsaturation. Journal of Molecular Liquids, 2020, 301, 112322.	4.9	38
6	Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews, 2020, 405, 213111.	18.8	329
7	Adsorption in the context of water purification. , 2020, , 67-100.		6
8	Zero-dimensional carbon nanomaterials-based adsorbents., 2020,, 181-193.		0
9	One-dimensional carbon nanomaterials-based adsorbents. , 2020, , 195-224.		8
10	Two-dimensional carbon nanomaterials-based adsorbents., 2020,, 225-273.		2
11	Regeneration and recyclability of carbon nanomaterials after adsorption. , 2020, , 349-363.		1
12	Water purification using various technologies and their advantages and disadvantages., 2020,, 37-66.		4
13	Carbon nanomaterials: synthesis, functionalization, and properties. , 2020, , 137-179.		4
14	Biopolymer-functionalized carbon nanomaterials–based adsorbents. , 2020, , 297-326.		0
15	Carbon-based nano/micromotors for adsorption. , 2020, , 341-347.		0
16	Toxicity of carbon nanomaterials., 2020,, 365-385.		0
17	Outlook and future research, development, and innovation directions. , 2020, , 387-392.		0
18	Oil-miscible, halogen-free, and surface-active lauryl sulphate-derived ionic liquids for enhancement of tribological properties. Journal of Molecular Liquids, 2020, 318, 114005.	4.9	23

#	Article	IF	Citations
19	Effect of reaction parameters on the adsorption. , 2020, , 119-135.		3
20	Conducting polymer-functionalized carbon nanomaterials-based adsorbents. , 2020, , 327-340.		1
21	Direct growth of nanostructural MoS2 over the h-BN nanoplatelets: An efficient heterostructure for visible light photoreduction of CO2 to methanol. Journal of CO2 Utilization, 2020, 42, 101345.	6.8	33
22	Polypyrrole-Promoted rGO–MoS ₂ Nanocomposites for Enhanced Photocatalytic Conversion of CO ₂ and H ₂ O to CO, CH ₄ , and H ₂ Products. ACS Applied Energy Materials, 2020, 3, 9897-9909.	5.1	61
23	Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in Colloid and Interface Science, 2019, 272, 102009.	14.7	490
24	Efficient Removal of Pb(II) and Cd(II) from Industrial Mine Water by a Hierarchical MoS ₂ /SH-MWCNT Nanocomposite. ACS Omega, 2019, 4, 13922-13935.	3.5	133
25	Fatty acids-derived protic ionic liquids as lubricant additive to synthetic lube base oil for enhancement of tribological properties. Journal of Molecular Liquids, 2019, 293, 111444.	4.9	49
26	Organophosphate anion based low viscosity ionic liquids as oil-miscible additives for lubrication enhancement. Journal of Molecular Liquids, 2018, 272, 430-438.	4.9	26
27	Thermophysical properties of trioctylalkylammonium bis(salicylato)borate ionic liquids: Effect of alkyl chain length. Journal of Molecular Liquids, 2018, 269, 540-546.	4.9	21
28	Physicochemical and tribophysical properties of trioctylalkylammonium bis(salicylato)borate (N888n-BScB) ionic liquids: effect of alkyl chain length. Physical Chemistry Chemical Physics, 2017, 19, 6433-6442.	2.8	50
29	Octadecanethiol-grafted molybdenum disulfide nanosheets as oil-dispersible additive for reduction of friction and wear. FlatChem, 2017, 3, 16-25.	5.6	44
30	Transport and Association of Ions in Lithium Battery Electrolytes Based on Glycol Ether Mixed with Halogen-Free Orthoborate Ionic Liquid. Scientific Reports, 2017, 7, 16340.	3.3	31
31	Ionicâ€Liquidâ€Functionalized Copper Oxide Nanorods for Photocatalytic Splitting of Water. ChemPlusChem, 2016, 81, 489-495.	2.8	18
32	Antimicrobial and lubrication properties of 1-acetyl-3-hexylbenzotriazolium benzoate/sorbate ionic liquids. RSC Advances, 2016, 6, 46567-46572.	3.6	10
33	Microtribological properties of a spin-coated thin film of 1-butyl-3-(propyltrimethoxysilane)imidazolium bis(mandelato)borate ionic liquid. RSC Advances, 2016, 6, 78296-78302.	3.6	8
34	PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS 2 nanosheets and their potential for lubrication application. Journal of Industrial and Engineering Chemistry, 2016, 42, 87-94.	5.8	55
35	Hierarchical Microspheres of MoS ₂ Nanosheets: Efficient and Regenerative Adsorbent for Removal of Water-Soluble Dyes. Industrial & Dyes. Industrial & Removal of Water-Soluble Dyes. Industrial & Dyes. Industrial	3.7	179
36	Fatty acid ionic liquids as environmentally friendly lubricants for low friction and wear. RSC Advances, 2016, 6, 3462-3469.	3.6	95

#	Article	IF	CITATIONS
37	Covalently attached graphene–ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. Journal of Materials Chemistry A, 2016, 4, 926-937.	10.3	129
38	Tuning the band-gap of h-boron nitride nanoplatelets by covalent grafting of imidazolium ionic liquids. RSC Advances, 2016, 6, 21119-21126.	3.6	16
39	Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity. Applied Surface Science, 2016, 364, 878-885.	6.1	18
40	Fatty-Acid-Constituted Halogen-Free Ionic Liquids as Renewable, Environmentally Friendly, and High-Performance Lubricant Additives. Industrial & Engineering Chemistry Research, 2016, 55, 856-865.	3.7	90
41	Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Applied Catalysis B: Environmental, 2016, 181, 352-362.	20.2	286
42	Halogen-free ionic liquids: effect of chelated orthoborate anion structure on their lubrication properties. RSC Advances, 2015, 5, 25287-25294.	3.6	50
43	Alkyl-Chain-Grafted Hexagonal Boron Nitride Nanoplatelets as Oil-Dispersible Additives for Friction and Wear Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3708-3716.	8.0	145
44	Halogen-free imidazolium/ammonium-bis(salicylato)borate ionic liquids as high performance lubricant additives. RSC Advances, 2014, 4, 1293-1301.	3.6	63
45	Halogen-Free Bis(imidazolium)/Bis(ammonium)-Di[bis(salicylato)borate] Ionic Liquids As Energy-Efficient and Environmentally Friendly Lubricant Additives. ACS Applied Materials & Interfaces, 2014, 6, 15318-15328.	8.0	126
46	Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. Journal of Materials Chemistry A, 2013, 1, 5612.	10.3	95