
Tetsuhiro Kudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5908050/publications.pdf Version: 2024-02-01

TETSUHIDO KUDO

#	Article	IF	CITATIONS
1	Nanoparticle Assembling Dynamics Induced by Pulsed Optical Force. Chemical Record, 2021, 21, 1473-1488.	5.8	0
2	Resonantly Enhanced Optical Trapping of Single Dye-Doped Particles at an Interface. ACS Photonics, 2021, 8, 1832-1839.	6.6	19
3	Photon Momentum Dictates the Shape of Swarming Gold Nanoparticles in Optical Trapping at an Interface. Journal of Physical Chemistry C, 2021, 125, 19013-19021.	3.1	6
4	Cooperative Optical Trapping of Polystyrene Microparticle and Protein Forming a Submillimeter Linear Assembly of Microparticle. Journal of Physical Chemistry C, 2021, 125, 18988-18999.	3.1	8
5	Opto-thermophoretic trapping of micro and nanoparticles with a 2 µm Tm-doped fiber laser. Optics Express, 2021, 29, 38314.	3.4	7
6	Large Submillimeter Assembly of Microparticles with Necklace-like Patterns Formed by Laser Trapping at Solution Surface. Journal of Physical Chemistry Letters, 2020, 11, 6057-6062.	4.6	6
7	Anomalously Large Assembly Formation of Polystyrene Nanoparticles by Optical Trapping at the Solution Surface. Langmuir, 2020, 36, 14234-14242.	3.5	10
8	Optical Force-Induced Dynamics of Assembling, Rearrangement, and Three-Dimensional Pistol-like Ejection of Microparticles at the Solution Surface. Journal of Physical Chemistry C, 2020, 124, 27107-27117.	3.1	9
9	Dynamic Coupling of Optically Evolved Assembling and Swarming of Gold Nanoparticles with Photothermal Local Phase Separation of Polymer Solution. Journal of Physical Chemistry C, 2020, 124, 16604-16615.	3.1	16
10	Transmission spectral and diffraction pattern study on optical trapping and assembling of dielectric nanoparticles at solution/glass interface. , 2020, , .		1
11	Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface. Optics Express, 2020, 28, 27727.	3.4	21
12	Formation Mechanism and Fluorescence Characterization of a Transient Assembly of Nanoparticles Generated by Femtosecond Laser Trapping. Journal of Physical Chemistry C, 2019, 123, 27823-27833.	3.1	5
13	A Single Large Assembly with Dynamically Fluctuating Swarms of Gold Nanoparticles Formed by Trapping Laser. Nano Letters, 2018, 18, 5846-5853.	9.1	39
14	Resonance optical trapping of individual dye-doped polystyrene particles with blue- and red-detuned lasers. Optics Express, 2017, 25, 4655.	3.4	23
15	Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation. Nano Letters, 2016, 16, 3058-3062.	9.1	60
16	Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface. Langmuir, 2016, 32, 12488-12496.	3.5	38
17	Resonance optical manipulation of nano-objects based on nonlinear optical response. Physical Chemistry Chemical Physics, 2013, 15, 14595.	2.8	20
18	Two-color laser manipulation of single organic molecules based on nonlinear optical response. European Physical Journal B, 2013, 86, 1.	1.5	6

Tetsuhiro Kudo

#	Article	IF	CITATIONS
19	Proposed Nonlinear Resonance Laser Technique for Manipulating Nanoparticles. Physical Review Letters, 2012, 109, 087402.	7.8	53
20	Theory of radiation force exerted on dye-doped molecules irradiated by resonant laser. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 66-69.	0.8	13
21	Unraveling the threeâ€dimensional morphology and dynamics of the optically evolving polystyrene nanoparticle assembly using dualâ€objective lens microscopy. Journal of the Chinese Chemical Society, 0, , .	1.4	3
22	The Optical Absorption Force Allows Controlling Colloidal Assembly Morphology at an Interface. Advanced Optical Materials, 0, , 2200231.	7.3	5