## Kelly Chance

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5908040/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 533-572.                                                                                             | 2.3 | 3,129     |
| 2  | The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130, 4-50.                                                                                                 | 2.3 | 2,810     |
| 3  | The HITRAN 2004 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96, 139-204.                                                                                              | 2.3 | 2,601     |
| 4  | The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82, 5-44.                                                   | 2.3 | 1,080     |
| 5  | Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2columns. Journal of Geophysical Research, 2003, 108, .                                                                              | 3.3 | 442       |
| 6  | Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discussions, 2005, 130, 407.                                            | 3.2 | 392       |
| 7  | Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Applied Optics, 1997, 36, 5224.                                                         | 2.1 | 366       |
| 8  | An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical Research, 2002, 107, ACH 9-1.                                                                                                         | 3.3 | 355       |
| 9  | Mapping isoprene emissions over North America using formaldehyde column observations from space.<br>Journal of Geophysical Research, 2003, 108, .                                                                              | 3.3 | 346       |
| 10 | An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1289-1295.    | 2.3 | 346       |
| 11 | Air mass factor formulation for spectroscopic measurements from satellites: Application to<br>formaldehyde retrievals from the Global Ozone Monitoring Experiment. Journal of Geophysical<br>Research, 2001, 106, 14539-14550. | 3.3 | 318       |
| 12 | The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 2018, 18, 5699-5745.                                                                                                        | 4.9 | 259       |
| 13 | Ozone profile retrievals from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 2010, 10, 2521-2537.                                                                                                         | 4.9 | 250       |
| 14 | Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. Journal of Geophysical Research, 2006, 111, .                               | 3.3 | 240       |
| 15 | Tropospheric emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and<br>Radiative Transfer, 2017, 186, 17-39.                                                                                     | 2.3 | 239       |
| 16 | Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. Journal of Geophysical Research, 2008, 113, .                                         | 3.3 | 234       |
| 17 | Application of satellite observations for timely updates to global anthropogenic<br>NO <sub><i>x</i></sub> emission inventories. Geophysical Research Letters, 2011, 38, n/a-n/a.                                              | 4.0 | 234       |
| 18 | Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. Journal of Geophysical Research, 2007, 112, .                                   | 3.3 | 232       |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Satellite observations of atmospheric methane and their value for quantifying methane emissions.<br>Atmospheric Chemistry and Physics, 2016, 16, 14371-14396.                                                                                           | 4.9  | 230       |
| 20 | Satellite observations of formaldehyde over North America from GOME. Geophysical Research Letters, 2000, 27, 3461-3464.                                                                                                                                 | 4.0  | 218       |
| 21 | Sensitivity of ozone to bromine in the lower stratosphere. Geophysical Research Letters, 2005, 32, .                                                                                                                                                    | 4.0  | 207       |
| 22 | Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft<br>measurements over and downwind of eastern North America. Journal of Geophysical Research, 2006,<br>111, .                                            | 3.3  | 181       |
| 23 | Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment:<br>Algorithm description and validation. Journal of Geophysical Research, 2005, 110, .                                                                     | 3.3  | 171       |
| 24 | Analysis of BrO measurements from the Global Ozone Monitoring Experiment. Geophysical Research<br>Letters, 1998, 25, 3335-3338.                                                                                                                         | 4.0  | 167       |
| 25 | Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmospheric Chemistry and Physics, 2012, 12, 6219-6235.                                                                                                            | 4.9  | 166       |
| 26 | Evaluating a Spaceâ€Based Indicator of Surface Ozoneâ€NO <sub><i>x</i></sub> â€VOC Sensitivity Over<br>Midlatitude Source Regions and Application to Decadal Trends. Journal of Geophysical Research D:<br>Atmospheres, 2017, 122, 10-461.              | 3.3  | 165       |
| 27 | New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer<br>(GEMS). Bulletin of the American Meteorological Society, 2020, 101, E1-E22.                                                                          | 3.3  | 165       |
| 28 | The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1043-1059.                                                             | 2.3  | 161       |
| 29 | Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone.<br>Atmospheric Chemistry and Physics, 2007, 7, 815-838.                                                                                                       | 4.9  | 156       |
| 30 | Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI)<br>formaldehyde retrieval. Atmospheric Measurement Techniques, 2015, 8, 19-32.                                                                                      | 3.1  | 142       |
| 31 | Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME)<br>formaldehyde column measurements. Journal of Geophysical Research, 2005, 110, .                                                                                | 3.3  | 140       |
| 32 | Satellite mapping of rain-induced nitric oxide emissions from soils. Journal of Geophysical Research, 2004, 109, n/a-n/a.                                                                                                                               | 3.3  | 137       |
| 33 | Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from<br>Satellite and Inferring Cancer Risks in the United States. Environmental Science & Technology,<br>2017, 51, 5650-5657.                                     | 10.0 | 131       |
| 34 | Seasonal and interannual variability of North American isoprene emissions as determined by<br>formaldehyde column measurements from space. Geophysical Research Letters, 2003, 30, n/a-n/a.                                                             | 4.0  | 125       |
| 35 | The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements:<br>NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. Bulletin of the American<br>Meteorological Society, 2012, 93, 1547-1566. | 3.3  | 118       |
| 36 | A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,                                                                                                                                                  | 4.0  | 116       |

| #  | Article                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evaluation of GOME satellite measurements of tropospheric NO2and HCHO using regional data from aircraft campaigns in the southeastern United States. Journal of Geophysical Research, 2004, 109, .                                                                                                | 3.3 | 113       |
| 38 | Remote Sensing of Tropospheric Pollution from Space. Bulletin of the American Meteorological Society, 2008, 89, 805-822.                                                                                                                                                                          | 3.3 | 108       |
| 39 | Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI. Atmospheric Chemistry and Physics, 2010, 10, 4725-4739.                                                                                                        | 4.9 | 106       |
| 40 | Application of OMI, SCIAMACHY, and GOMEâ€2 satellite SO <sub>2</sub> retrievals for detection of large emission sources. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,399.                                                                                                       | 3.3 | 102       |
| 41 | Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone<br>Monitoring Experiment (GOME) observations of HCHO columns. Journal of Geophysical Research,<br>2008, 113, .                                                                                            | 3.3 | 99        |
| 42 | Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six<br>retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with<br>SEAC <sup>4</sup> RS aircraft observations over the southeast US.<br>Atmospheric Chemistry and Physics, 2016, 16, 13477-13490. | 4.9 | 99        |
| 43 | Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal<br>infrared and GOME-2 ultraviolet measurements over Europe. Atmospheric Chemistry and Physics, 2013,<br>13, 9675-9693.                                                                          | 4.9 | 97        |
| 44 | Evidence of lightning NOxand convective transport of pollutants in satellite observations over North America. Geophysical Research Letters, 2005, 32, .                                                                                                                                           | 4.0 | 95        |
| 45 | Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred<br>from oversampling of satellite (OMI) measurements of HCHO columns. Environmental Research<br>Letters, 2014, 9, 114004.                                                                         | 5.2 | 95        |
| 46 | Estimating European volatile organic compound emissions using satellite observations of<br>formaldehyde from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 2010, 10,<br>11501-11517.                                                                                        | 4.9 | 94        |
| 47 | A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146, 510-528.                                  | 2.3 | 94        |
| 48 | The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system.<br>Atmospheric Chemistry and Physics, 2012, 12, 6699-6721.                                                                                                                                 | 4.9 | 93        |
| 49 | Improved tropospheric ozone profile retrievals using OMI and TES radiances. Geophysical Research<br>Letters, 2007, 34, .                                                                                                                                                                          | 4.0 | 85        |
| 50 | Topâ€down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6849-6868.                                                                                                              | 3.3 | 84        |
| 51 | First observations of iodine oxide from space. Geophysical Research Letters, 2007, 34, .                                                                                                                                                                                                          | 4.0 | 83        |
| 52 | Ultraviolet and visible absorption cross-sections for HITRAN. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82, 491-504.                                                                                                                                                     | 2.3 | 81        |
| 53 | Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North<br>America. Journal of Geophysical Research, 2008, 113, .                                                                                                                                          | 3.3 | 77        |
| 54 | Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns<br>with Microwave Limb Sounder (MLS) measurements. Atmospheric Chemistry and Physics, 2010, 10,<br>2539-2549.                                                                                      | 4.9 | 77        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME-2) using an<br>optimal estimation approach: Algorithm and initial validation. Journal of Geophysical Research, 2011,<br>116, .                                                | 3.3 | 74        |
| 56 | Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space. Atmospheric Environment, 2014, 99, 32-40.                                                                                                              | 4.1 | 73        |
| 57 | Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints<br>from SENEX aircraft observations, and interpretation of OMI satellite data. Atmospheric Chemistry<br>and Physics, 2017, 17, 8725-8738.                  | 4.9 | 72        |
| 58 | Undersampling correction for array detector-based satellite spectrometers. Applied Optics, 2005, 44, 1296.                                                                                                                                                     | 2.1 | 71        |
| 59 | Latitudinal and vertical distribution of bromine monoxide in the lower stratosphere from Scanning<br>Imaging Absorption Spectrometer for Atmospheric Chartography limb scattering measurements.<br>Journal of Geophysical Research, 2006, 111, .               | 3.3 | 70        |
| 60 | Longâ€ŧerm (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the<br>OMI satellite instrument: Evidence of changing emissions of volatile organic compounds. Geophysical<br>Research Letters, 2017, 44, 7079-7086.              | 4.0 | 68        |
| 61 | Glyoxal retrieval from the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 2014,<br>7, 3891-3907.                                                                                                                                             | 3.1 | 67        |
| 62 | Global satellite analysis of the relation between aerosols and short-lived trace gases. Atmospheric Chemistry and Physics, 2011, 11, 1255-1267.                                                                                                                | 4.9 | 65        |
| 63 | Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ campaign. Atmospheric Environment, 2020, 224, 117341. | 4.1 | 65        |
| 64 | A physics-based approach to oversample multi-satellite, multispecies observations to a common grid.<br>Atmospheric Measurement Techniques, 2018, 11, 6679-6701.                                                                                                | 3.1 | 64        |
| 65 | Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME Spectrometer. Geophysical Research Letters, 1998, 25, 1317-1320.                                                                                    | 4.0 | 63        |
| 66 | Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmospheric Chemistry and Physics, 2012, 12, 1255-1285.                                                                      | 4.9 | 63        |
| 67 | First directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model. Journal of Geophysical Research, 2006, 111, .                                                                                        | 3.3 | 61        |
| 68 | Ozone air quality measurement requirements for a geostationary satellite mission. Atmospheric<br>Environment, 2011, 45, 7143-7150.                                                                                                                             | 4.1 | 61        |
| 69 | Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources.<br>Atmospheric Chemistry and Physics, 2013, 13, 9321-9335.                                                                                                          | 4.9 | 60        |
| 70 | Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric<br>ozone from simulated clear-sky GEO-CAPE measurements. Atmospheric Environment, 2011, 45, 7151-7165.                                                         | 4.1 | 59        |
| 71 | Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques, 2019, 12, 5655-5668.                                                                                           | 3.1 | 58        |
| 72 | SCIAMACHY Level 1 data: calibration concept and in-flight calibration. Atmospheric Chemistry and Physics, 2006, 6, 5347-5367.                                                                                                                                  | 4.9 | 57        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tropospheric emissions: monitoring of pollution (TEMPO). Proceedings of SPIE, 2013, , .                                                                                                                                                                         | 0.8 | 57        |
| 74 | Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015.<br>Journal of Molecular Spectroscopy, 2016, 327, 105-121.                                                                                               | 1.2 | 57        |
| 75 | Stratospheric profiles of nitrogen dioxide observed by Optical Spectrograph and Infrared Imager<br>System on the Odin satellite. Journal of Geophysical Research, 2003, 108, .                                                                                  | 3.3 | 56        |
| 76 | Springtime transitions of NO <sub>2</sub> , CO, and O <sub>3</sub> over North America: Model evaluation and analysis. Journal of Geophysical Research, 2008, 113, .                                                                                             | 3.3 | 56        |
| 77 | Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. Journal of Geophysical Research, 2011, 116, .                                                                  | 3.3 | 56        |
| 78 | Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. Journal of Geophysical Research, 2009, 114, .                                                                            | 3.3 | 55        |
| 79 | Characterization and correction of Global Ozone Monitoring Experiment 2 ultraviolet measurements and application to ozone profile retrievals. Journal of Geophysical Research, 2012, 117, .                                                                     | 3.3 | 55        |
| 80 | Widespread persistent near-surface ozone depletion at northern high latitudes in spring. Geophysical<br>Research Letters, 2003, 30, .                                                                                                                           | 4.0 | 53        |
| 81 | Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone<br>Monitoring Experiment (GOME) ultraviolet measurements. Atmospheric Chemistry and Physics, 2007, 7,<br>3571-3578.                                                | 4.9 | 53        |
| 82 | Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmospheric Chemistry and Physics, 2012, 12, 10945-10955.                                                                                 | 4.9 | 53        |
| 83 | Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations.<br>Atmospheric Measurement Techniques, 2017, 10, 2455-2475.                                                                                                         | 3.1 | 53        |
| 84 | The TSISâ€1 Hybrid Solar Reference Spectrum. Geophysical Research Letters, 2021, 48, e2020GL091709.                                                                                                                                                             | 4.0 | 53        |
| 85 | Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite<br>observations of formaldehyde: implications for oxidants and particulate matter. Atmospheric<br>Chemistry and Physics, 2014, 14, 7693-7703.                  | 4.9 | 52        |
| 86 | The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: Implications for ozone production sensitivity. Atmospheric Environment, 2011, 45, 3103-3111.                                                                                                  | 4.1 | 50        |
| 87 | Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization<br>(GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas<br>2013. Atmospheric Measurement Techniques, 2016, 9, 2647-2668. | 3.1 | 50        |
| 88 | Long-term tropospheric formaldehyde concentrations deduced from ground-based fourier transform solar infrared measurements. Atmospheric Chemistry and Physics, 2009, 9, 7131-7142.                                                                              | 4.9 | 49        |
| 89 | Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval. Atmospheric Measurement Techniques, 2016, 9, 2797-2812.                                                                                               | 3.1 | 48        |
| 90 | Can a "state of the art―chemistry transport model simulate Amazonian tropospheric chemistry?.<br>Journal of Geophysical Research, 2011, 116, .                                                                                                                  | 3.3 | 47        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons. Atmospheric Chemistry and Physics, 2016, 16, 4631-4639.                            | 4.9 | 47        |
| 92  | Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmospheric Chemistry and Physics, 2018, 18, 15017-15046.                            | 4.9 | 46        |
| 93  | Stratospheric and tropospheric NO2 observed by SCIAMACHY: first results. Advances in Space<br>Research, 2004, 34, 780-785.                                                                                                    | 2.6 | 44        |
| 94  | Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. Atmospheric Chemistry and Physics, 2012, 12, 9909-9922. | 4.9 | 42        |
| 95  | Monitoring Air Quality from Space: The Case for the Geostationary Platform. Bulletin of the American<br>Meteorological Society, 2012, 93, 221-233.                                                                            | 3.3 | 41        |
| 96  | Halogen-driven low-altitude O3and hydrocarbon losses in spring at northern high latitudes. Journal of Geophysical Research, 2006, 111, .                                                                                      | 3.3 | 40        |
| 97  | Water vapor retrieval from OMI visible spectra. Atmospheric Measurement Techniques, 2014, 7, 1901-1913.                                                                                                                       | 3.1 | 40        |
| 98  | Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations. Atmospheric Chemistry and Physics, 2014, 14, 6261-6271.                                                           | 4.9 | 40        |
| 99  | The smithsonian astrophysical observatory database SAO92. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52, 447-457.                                                                                     | 2.3 | 39        |
| 100 | Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution<br>Events (GEO-CAPE) Airborne Simulator over Houston, Texas. Atmospheric Measurement Techniques,<br>2018, 11, 5941-5964.      | 3.1 | 39        |
| 101 | Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms. Journal of Geophysical Research, 2006, 111, .                                                                          | 3.3 | 38        |
| 102 | Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring<br>Instrument by means of a neural network algorithm. Atmospheric Measurement Techniques, 2011, 4,<br>2375-2388.                      | 3.1 | 38        |
| 103 | The role of OH production in interpreting the variability of CH <sub>2</sub> O columns in the southeast U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 478-493.                                               | 3.3 | 38        |
| 104 | Revised ultraviolet absorption cross sections of H2CO for the HITRAN database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1509-1510.                                                             | 2.3 | 37        |
| 105 | Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra.<br>Atmospheric Measurement Techniques, 2013, 6, 239-249.                                                                             | 3.1 | 36        |
| 106 | An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations. Atmospheric Chemistry and Physics, 2016, 16, 177-193.                                                                                 | 4.9 | 35        |
| 107 | Tibetan middle tropospheric ozone minimum in June discovered from GOME observations. Geophysical<br>Research Letters, 2009, 36, .                                                                                             | 4.0 | 34        |
| 108 | Correction to "First directly retrieved global distribution of tropospheric column ozone from<br>GOME: Comparison with the GEOS-CHEM model― Journal of Geophysical Research, 2006, 111, n/a-n/a.                              | 3.3 | 33        |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Intercomparison of GOME, ozonesonde, and SAGE II measurements of ozone: Demonstration of the need to homogenize available ozonesonde data sets. Journal of Geophysical Research, 2006, 111, .                                                                                    | 3.3 | 31        |
| 110 | Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America:<br>Implications for topâ€down isoprene emission estimates. Journal of Geophysical Research, 2012, 117, .                                                                          | 3.3 | 31        |
| 111 | Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals.<br>Atmospheric Measurement Techniques, 2017, 10, 4373-4388.                                                                                                                      | 3.1 | 31        |
| 112 | An inversion of NO <sub><i>x</i></sub> and<br>non-methane volatile organic compound (NMVOC) emissions using satellite observations during the<br>KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and<br>Physics, 2020, 20, 9837-9854. | 4.9 | 30        |
| 113 | Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopause-based ozone profile climatology. Atmospheric Measurement Techniques, 2013, 6, 2239-2254.                                                                  | 3.1 | 29        |
| 114 | Improved ozone profile retrievals from GOME data with degradation correction in reflectance.<br>Atmospheric Chemistry and Physics, 2007, 7, 1575-1583.                                                                                                                           | 4.9 | 28        |
| 115 | Improved monitoring of surface ozone by joint assimilation of geostationary satellite observations of ozone and CO. Atmospheric Environment, 2014, 84, 254-261.                                                                                                                  | 4.1 | 28        |
| 116 | Validation of OMI HCHO data and its analysis over Asia. Science of the Total Environment, 2014, 490, 93-105.                                                                                                                                                                     | 8.0 | 28        |
| 117 | Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with Brewer measurements. Atmospheric Chemistry and Physics, 2015, 15, 667-683.                                                                                   | 4.9 | 28        |
| 118 | The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales:<br>coastal processes, land-use change and air quality. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2011, 366, 3210-3224.                        | 4.0 | 27        |
| 119 | Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 1327-1338.                                                                                                                     | 4.9 | 27        |
| 120 | Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011<br>DISCOVER-AQ flight campaign. Atmospheric Measurement Techniques, 2015, 8, 751-759.                                                                                          | 3.1 | 27        |
| 121 | Preliminary results for HCHO and BrO from the EOS-Aura Ozone Monitoring Instrument. , 2004, , .                                                                                                                                                                                  |     | 26        |
| 122 | Five decades observing Earth's atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 238, 106478.                                                                     | 2.3 | 26        |
| 123 | Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI. Atmospheric Chemistry and Physics, 2021, 21, 18227-18245.                                                                           | 4.9 | 25        |
| 124 | <title>Scanning imaging absorption spectrometer for atmospheric chartography</title> .,1991,,.                                                                                                                                                                                   |     | 24        |
| 125 | <title>Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography</title> ., 1991, 1491, 151.                                                                           |     | 24        |
| 126 | An overview of the nadir sensor and algorithms for the NPOESS ozone mapping and profiler suite (OMPS). , 2003, , .                                                                                                                                                               |     | 24        |

8

| #   | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Observation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer. Atmospheric Chemistry and Physics, 2015, 15, 9865-9881.                                                                                                         | 4.9 | 24        |
| 128 | Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements.<br>Atmospheric Measurement Techniques, 2017, 10, 939-953.                                                                                                                            | 3.1 | 24        |
| 129 | The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality. Atmospheric Measurement Techniques, 2014, 7, 2185-2201.                                                                                                         | 3.1 | 23        |
| 130 | Link Between Arctic Tropospheric BrO Explosion Observed From Space and Seaâ€Salt Aerosols From<br>Blowing Snow Investigated Using Ozone Monitoring Instrument BrO Data and GEOSâ€5 Data<br>Assimilation System. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6954-6983. | 3.3 | 23        |
| 131 | A geostationary thermal infrared sensor to monitor the lowermost troposphere:<br>O <sub>3</sub> and CO retrieval studies. Atmospheric Measurement<br>Techniques, 2011, 4, 297-317.                                                                                                    | 3.1 | 22        |
| 132 | Interpreting satellite column observations of formaldehyde over tropical South America.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365,<br>1741-1751.                                                                            | 3.4 | 21        |
| 133 | Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns.<br>Atmospheric Chemistry and Physics, 2020, 20, 12329-12345.                                                                                                                    | 4.9 | 21        |
| 134 | Validation of 10-year SAO OMI ozone profile (PROFOZ) product using Aura MLS measurements.<br>Atmospheric Measurement Techniques, 2018, 11, 17-32.                                                                                                                                     | 3.1 | 20        |
| 135 | Reevaluating the Use of O <sub>2</sub> Â <i>a</i> <sup>1</sup> Δ <sub><i>g</i></sub> Band in Spaceborne<br>Remote Sensing of Greenhouse Gases. Geophysical Research Letters, 2018, 45, 5779-5787.                                                                                     | 4.0 | 19        |
| 136 | Evaluating AURA/OMI ozone profiles using ozonesonde data and EPA surface measurements for August 2006. Atmospheric Environment, 2011, 45, 5523-5530.                                                                                                                                  | 4.1 | 18        |
| 137 | The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130, 365-372.                                                                                             | 2.3 | 18        |
| 138 | Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia. Atmospheric Chemistry and Physics, 2017, 17, 4673-4686.                                                                              | 4.9 | 18        |
| 139 | Ozone Monitoring Instrument (OMI) Total Column Water Vapor version 4 validation and applications.<br>Atmospheric Measurement Techniques, 2019, 12, 5183-5199.                                                                                                                         | 3.1 | 18        |
| 140 | Dynamical and chemical features of a cutoff low over northeast China in July 2007: Results from satellite measurements and reanalysis. Advances in Atmospheric Sciences, 2013, 30, 525-540.                                                                                           | 4.3 | 17        |
| 141 | Validation and update of OMI Total Column Water Vapor product. Atmospheric Chemistry and Physics, 2016, 16, 11379-11393.                                                                                                                                                              | 4.9 | 17        |
| 142 | A semi-empirical potential energy surface and line list for<br>H <sub>2</sub> <sup>16</sup> O extending into<br>the near-ultraviolet. Atmospheric Chemistry and Physics, 2020, 20, 10015-10027.                                                                                       | 4.9 | 17        |
| 143 | Cloud retrieval algorithm for the European Space Agency's Global Ozone Monitoring Experiment. ,<br>1998, , .                                                                                                                                                                          |     | 16        |
| 144 | Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern<br>winters 1987–2001. Journal of Geophysical Research, 2010, 115, .                                                                                                                        | 3.3 | 16        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Estimating the influence of lightning on upper tropospheric ozone using NLDN lightning data and CMAQ model. Atmospheric Environment, 2013, 67, 219-228.                                                       | 4.1 | 16        |
| 146 | The GeoTASO airborne spectrometer project. Proceedings of SPIE, 2014, , .                                                                                                                                     | 0.8 | 16        |
| 147 | Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS). Atmospheric Measurement Techniques, 2019, 12, 3551-3571.                                  | 3.1 | 16        |
| 148 | Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance.<br>Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.                                                          | 4.9 | 15        |
| 149 | Pressure Broadening of the 2.4978-THz Rotational Lines of HO2 by N2 and O2. Journal of Molecular Spectroscopy, 1994, 163, 67-70.                                                                              | 1.2 | 14        |
| 150 | TEMPO Green Paper: Chemistry, physics, and meteorology experiments with the Tropospheric Emissions: monitoring of pollution instrument. , 2019, , .                                                           |     | 14        |
| 151 | An ozone depletion event in the sub-arctic surface layer over Hudson Bay, Canada. Journal of<br>Atmospheric Chemistry, 2007, 57, 255-280.                                                                     | 3.2 | 13        |
| 152 | A climatology of visible surface reflectance spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 180, 39-46.                                                                          | 2.3 | 13        |
| 153 | Deriving the slit functions from OMI solar observations and its implications for ozone-profile retrieval. Atmospheric Measurement Techniques, 2017, 10, 3677-3695.                                            | 3.1 | 13        |
| 154 | Ultraviolet and visible spectroscopy and spaceborne remote sensing of the Earth's atmosphere.<br>Comptes Rendus Physique, 2005, 6, 836-847.                                                                   | 0.9 | 12        |
| 155 | Mapping tropospheric ozone profiles from an airborne ultraviolet-visible spectrometer. Applied Optics, 2005, 44, 3312.                                                                                        | 2.1 | 12        |
| 156 | Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation. Atmospheric Measurement Techniques, 2019, 12, 5201-5215. | 3.1 | 12        |
| 157 | Explicit Aerosol Correction of OMI Formaldehyde Retrievals. Earth and Space Science, 2019, 6, 2087-2105.                                                                                                      | 2.6 | 11        |
| 158 | Spectral calibration of the MethaneAIR instrument. Atmospheric Measurement Techniques, 2021, 14, 3737-3753.                                                                                                   | 3.1 | 11        |
| 159 | Spectroscopic Measurements of Tropospheric Composition from Satellite Measurements in the<br>Ultraviolet and Visible: Steps Toward Continuous Pollution Monitoring from Space. , 2006, , 1-25.                |     | 10        |
| 160 | Spatiotemporal Variation in Tropospheric Column Ozone over East Asia Observed by GOME and Ozonesondes. Scientific Online Letters on the Atmosphere, 2008, 4, 117-120.                                         | 1.4 | 10        |
| 161 | Dealing with spatial heterogeneity in pointwise-to-gridded- data comparisons. Atmospheric<br>Measurement Techniques, 2022, 15, 41-59.                                                                         | 3.1 | 10        |
| 162 | Response of Hurricane Harvey's rainfall to anthropogenic aerosols: A sensitivity study based on spectral bin microphysics with simulated aerosols. Atmospheric Research, 2020, 242, 104965.                   | 4.1 | 9         |

| #   | Article                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Enhanced Mid-Latitude Tropospheric Column Ozone over East Asia: Coupled Effects of Stratospheric<br>Ozone Intrusion and Anthropogenic Sources. Journal of the Meteorological Society of Japan, 2012, 90,<br>207-222.                                                                                              | 1.8 | 9         |
| 164 | New retrieval of BrO from SCIAMACHY limb: an estimate of the stratospheric bromine loading during April 2008. Atmospheric Measurement Techniques, 2013, 6, 2549-2561.                                                                                                                                             | 3.1 | 8         |
| 165 | Tropospheric ozone profiles from a ground-based ultraviolet spectrometer: a new retrieval method.<br>Applied Optics, 2006, 45, 2352.                                                                                                                                                                              | 2.1 | 6         |
| 166 | Linearization of the effect of slit function changes for improving Ozone Monitoring Instrument ozone profile retrievals. Atmospheric Measurement Techniques, 2019, 12, 3777-3788.                                                                                                                                 | 3.1 | 6         |
| 167 | OMI total bromine monoxide (OMBRO) data product: algorithm, retrieval and measurement comparisons. Atmospheric Measurement Techniques, 2019, 12, 2067-2084.                                                                                                                                                       | 3.1 | 6         |
| 168 | Revolutionary Air-Pollution Applications from Future Tropospheric Emissions: Monitoring of<br>Pollution (TEMPO) Observations. Bulletin of the American Meteorological Society, 2021, 102,<br>E1735-E1741.                                                                                                         | 3.3 | 6         |
| 169 | Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals. Atmospheric Measurement Techniques, 2020, 13, 5845-5854.                                                                                                                                                | 3.1 | 6         |
| 170 | Improvement of OMI ozone profile retrievals by simultaneously fitting polar mesospheric clouds.<br>Atmospheric Measurement Techniques, 2016, 9, 4521-4531.                                                                                                                                                        | 3.1 | 6         |
| 171 | Quantifying the Impact of Excess Moisture From Transpiration From Crops on an Extreme Heat Wave<br>Event in the Midwestern U.S.: A Topâ€Down Constraint From Moderate Resolution Imaging<br>Spectroradiometer Water Vapor Retrieval. Journal of Geophysical Research D: Atmospheres, 2020, 125,<br>e2019ID031941. | 3.3 | 5         |
| 172 | <title>Polar stratospheric cloud detection from the ILAS instrument</title> ., 2001, 4150, 68.                                                                                                                                                                                                                    |     | 4         |
| 173 | Analysis of ACAM Data for Trace Gas Retrievals during the 2011 DISCOVER-AQ Campaign. Journal of Spectroscopy, 2015, 2015, 1-7.                                                                                                                                                                                    | 1.3 | 4         |
| 174 | A precise photometric ratio via laser excitation of the sodium layer – II. Two-photon excitation using<br>lasers detuned from 589.16 and 819.71Ânm resonances. Monthly Notices of the Royal Astronomical<br>Society, 2021, 508, 4412-4428.                                                                        | 4.4 | 4         |
| 175 | A precise photometric ratio via laser excitation of the sodium layer – I. One-photon excitation using 342.78Ânm light. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4399-4411.                                                                                                                   | 4.4 | 4         |
| 176 | From Radiation Fields to Atmospheric Concentrations – Retrieval of Geophysical Parameters. , 2011, , 99-127.                                                                                                                                                                                                      |     | 3         |
| 177 | Radiative transfer acceleration based on the principal component analysis and lookup table of corrections: optimization and application to UV ozone profile retrievals. Atmospheric Measurement Techniques, 2021, 14, 2659-2672.                                                                                  | 3.1 | 3         |
| 178 | Validation and Comparison of Tropospheric Column Ozone Derived from GOME Measurements with Ozonesondes over Japan. Scientific Online Letters on the Atmosphere, 2007, 3, 41-44.                                                                                                                                   | 1.4 | 3         |
| 179 | Far-infrared spectroscopy of the earth's stratosphere. , 1985, , .                                                                                                                                                                                                                                                |     | 2         |
| 180 | Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals.<br>Remote Sensing, 2022, 14, 37.                                                                                                                                                                                  | 4.0 | 2         |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Evaluation of the Stratospheric and Tropospheric Bromine Burden Over Fairbanks, Alaska Based on<br>Column Retrievals of Bromine Monoxide. Journal of Geophysical Research D: Atmospheres, 2021, 126,<br>e2020JD032896.        | 3.3 | 1         |
| 182 | Atmospheric trace gas measurements from the European Space Agency's Global Ozone Monitoring Experiment. , 1998, , .                                                                                                           |     | 0         |
| 183 | <title>Tropospheric formaldehyde measurements from the ESA GOME instrument</title> ., 2001, 4150, 1.                                                                                                                          |     | 0         |
| 184 | Determination of Density at High Altitudes Using Rayleigh and Raman Scattering of Solar Radiation. ,<br>2005, , .                                                                                                             |     | 0         |
| 185 | An Airborne Spectrometer and Retrieval Development Project for Air Quality Measurements. , 2011, , .                                                                                                                          |     | 0         |
| 186 | A Geostationary air quality monitor for the Middle East. Journal of Physics: Conference Series, 2017, 869, 012085.                                                                                                            | 0.4 | 0         |
| 187 | Global Monitoring of Tropospheric Pollution from Geostationary Orbit. , 2007, , .                                                                                                                                             |     | 0         |
| 188 | High spatial and temporal resolution estimates of air pollutants from the TEMPO satellite:<br>Methodological opportunities and challenges for environmental epidemiology studies. ISEE<br>Conference Abstracts, 2020, 2020, . | 0.0 | 0         |
| 189 | An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations. Atmospheric Measurement Techniques, 2022, 15, 3721-3745.                                          | 3.1 | 0         |