Woong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5908034/publications.pdf

Version: 2024-02-01

WOONG CHOL

#	Article	IF	CITATIONS
1	Bimetallic Gold–Silver Nanostructures Drive Low Overpotentials for Electrochemical Carbon Dioxide Reduction. ACS Applied Materials & Interfaces, 2022, 14, 6604-6614.	8.0	14
2	Origin of Hydrogen Incorporated into Ethylene during Electrochemical CO ₂ Reduction in Membrane Electrode Assembly. ACS Energy Letters, 2022, 7, 939-945.	17.4	36
3	Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO ₂ electrolysis to C ₂₊ products. Journal of Materials Chemistry A, 2022, 10, 10363-10372.	10.3	16
4	Understanding morphological degradation of Ag nanoparticle during electrochemical CO2 reduction reaction by identical location observation. Electrochimica Acta, 2021, 371, 137795.	5.2	15
5	Electrocatalytic Reduction of Low Concentrations of CO ₂ Gas in a Membrane Electrode Assembly Electrolyzer. ACS Energy Letters, 2021, 6, 3488-3495.	17.4	73
6	Surface overgrowth on gold nanoparticles modulating high-energy facets for efficient electrochemical CO2 reduction. Nanoscale, 2021, 13, 14346-14353.	5.6	4
7	Strategies for Designing Nanoparticles for Electro―and Photocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2020, 15, 253-265.	3.3	9
8	Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO ₂ reduction. Energy and Environmental Science, 2020, 13, 4301-4311.	30.8	197
9	Catalyst design strategies for stable electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2020, 8, 15341-15357.	10.3	58
10	In Situ Monitoring of Individual Plasmonic Nanoparticles Resolves Multistep Nanoscale Sulfidation Reactions Hidden by Ensemble Average. Journal of Physical Chemistry C, 2019, 123, 23113-23123.	3.1	5
11	Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene Production by Electrochemical Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 6986-6994.	13.7	260
12	Regulation of electron-hole recombination kinetics on uniform metal-semiconductor nanostructures for photocatalytic hydrogen evolution. APL Materials, 2019, 7, 100702.	5.1	11
13	Metal–CdSe Double Shell Hollow Nanocubes via Sequential Nanoscale Reactions and Their Photocatalytic Hydrogen Evolution. Topics in Catalysis, 2018, 61, 965-976.	2.8	1
14	Synthesis of Gold Nanoparticles in Liquid Phase. , 2017, , 165-200.		0
15	Metal–semiconductor double shell hollow nanocubes for highly stable hydrogen generation photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13414-13418.	10.3	30
16	A Resonanceâ€Shifting Hybrid nâ€Type Layer for Boosting Nearâ€Infrared Response in Highly Efficient Colloidal Quantum Dots Solar Cells. Advanced Materials, 2015, 27, 8102-8108.	21.0	28