Sunil K Khare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5907822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial activity of some natural dyes. Dyes and Pigments, 2005, 66, 99-102.	2.0	276
2	Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresource Technology, 2008, 99, 1729-1735.	4.8	206
3	Alzheimer's disease and its treatment by different approaches: A review. European Journal of Medicinal Chemistry, 2021, 216, 113320.	2.6	199
4	Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresource Technology, 2011, 102, 1516-1520.	4.8	195
5	Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chemistry, 2006, 97, 426-430.	4.2	160
6	Enzyme-assisted aqueous extraction of peanut oil. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 215-218.	0.8	145
7	Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresource Technology, 2018, 252, 72-75.	4.8	125
8	One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp Journal of Chromatography A, 2005, 1075, 103-108.	1.8	115
9	Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochemical Engineering Journal, 2015, 102, 38-44.	1.8	113
10	Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresource Technology, 2008, 99, 4796-4802.	4.8	112
11	Screening and isolation of halophilic bacteria producing industrially important enzymes. Brazilian Journal of Microbiology, 2012, 43, 1595-1603.	0.8	111
12	Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. Journal of Chromatography A, 2005, 1069, 155-161.	1.8	108
13	Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification. Bioresource Technology, 2017, 242, 236-243.	4.8	102
14	Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresource Technology, 2011, 102, 4281-4284.	4.8	92
15	Purification and stability characteristics of an alkaline serine protease from a newly isolated Haloalkaliphilic bacterium sp. AH-6. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 121-131.	1.4	91
16	Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management, 2018, 215, 143-152.	3.8	91
17	Phytochemical delivery through nanocarriers: a review. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111389.	2.5	90
18	Microbial Nano-Factories: Synthesis and Biomedical Applications. Frontiers in Chemistry, 2021, 9, 626834.	1.8	88

#	Article	IF	CITATIONS
19	Citric acid production from Okara (soy-residue) by solid-state fermentation. Bioresource Technology, 1995, 54, 323-325.	4.8	86
20	A novel process for extraction of edible oils. Bioresource Technology, 2007, 98, 696-699.	4.8	85
21	Enzymes from solvent-tolerant microbes: Useful biocatalysts for non-aqueous enzymology. Critical Reviews in Biotechnology, 2009, 29, 44-54.	5.1	85
22	Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresource Technology, 2011, 102, 4815-4819.	4.8	84
23	Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Frontiers in Microbiology, 2014, 5, 165.	1.5	81
24	Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochemistry, 2008, 43, 1040-1046.	1.8	80
25	Thermozymes: Adaptive strategies and tools for their biotechnological applications. Bioresource Technology, 2019, 278, 372-382.	4.8	79
26	Enzymatic Remediation of Polyethylene Terephthalate (PET)–Based Polymers for Effective Management of Plastic Wastes: An Overview. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602325.	2.0	79
27	Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresource Technology, 2014, 153, 126-130.	4.8	76
28	Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresource Technology, 2012, 120, 300-304.	4.8	75
29	Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. International Biodeterioration and Biodegradation, 2012, 71, 1-8.	1.9	75
30	Microbial mineralization of struvite: A promising process to overcome phosphate sequestering crisis. Water Research, 2014, 54, 33-43.	5.3	74
31	Extremophiles: An Overview of Microorganism from Extreme Environment. International Journal of Agriculture Environment and Biotechnology, 2014, 7, 371.	0.1	73
32	Purification and characterization of maltooligosaccharide-forming α-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresource Technology, 2012, 116, 247-251.	4.8	68
33	Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresource Technology, 2013, 145, 357-361.	4.8	67
34	A protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa. Bioresource Technology, 2006, 97, 1788-1793.	4.8	65
35	Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme and Microbial Technology, 2007, 42, 11-16.	1.6	64
36	One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. Bioresource Technology, 2018, 251, 268-273.	4.8	63

#	Article	IF	CITATIONS
37	Enzyme-assisted aqueous extraction of rice bran oil. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 949-951.	0.8	58
38	Comparative one-factor-at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate. Microbial Cell Factories, 2011, 10, 114.	1.9	58
39	Three phase partitioning for extraction of oil from soybean. Bioresource Technology, 2002, 85, 327-329.	4.8	55
40	Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation. Journal of Hazardous Materials, 2011, 192, 620-627.	6.5	54
41	The active site and mechanism of the β-galactosidase from Escherichia coli. International Journal of Biochemistry & Cell Biology, 1994, 26, 309-318.	0.8	52
42	Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system. Bioresource Technology, 2018, 269, 121-126.	4.8	48
43	An efficient purification process for sweet potato beta-amylase by affinity precipitation with alginate. Enzyme and Microbial Technology, 2001, 28, 792-795.	1.6	42
44	Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation, 2012, 23, 25-34.	1.5	42
45	Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food Chemistry, 2000, 68, 153-157.	4.2	41
46	A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnology, 2011, 28, 136-145.	2.4	40
47	Hydrolysis of rice hull by crosslinked Aspergillus niger cellulase. Bioresource Technology, 2001, 78, 281-284.	4.8	39
48	Immobilization of xylan-degrading enzymes from Melanocarpus albomyces IIS 68 on the smart polymer Eudragit L-100. Applied Microbiology and Biotechnology, 2003, 61, 309-313.	1.7	39
49	Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports (Amsterdam, Netherlands), 2021, 30, e00613.	2.1	38
50	Purification and characterization of a solventâ€stable protease from <i>Geomicrobium</i> sp. EMB2. Environmental Technology (United Kingdom), 2010, 31, 1061-1072.	1.2	36
51	Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnology Letters, 2022, 44, 1-22.	1.1	36
52	Cholesterol-oxidase-magnetic nanobioconjugates for the production of 4-cholesten-3-one and 4-cholesten-3, 7-dione. Bioresource Technology, 2018, 254, 91-96.	4.8	35
53	Current insight and futuristic vistas of microbial transglutaminase in nutraceutical industry. Microbiological Research, 2018, 215, 7-14.	2.5	35
54	One-step purification of glucoamylase by affinity precipitation with alginate. Journal of Molecular Recognition, 2001, 14, 295-299.	1.1	34

#	Article	IF	CITATIONS
55	Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresource Technology, 2011, 102, 1722-1726.	4.8	34
56	A simple downstream processing protocol for the recovery of lactic acid from the fermentation broth. Bioresource Technology, 2020, 318, 124260.	4.8	33
57	Valorization of agro-starchy wastes as substrates for oleaginous microbes. Biomass and Bioenergy, 2019, 127, 105294.	2.9	31
58	Immobilization ofE. coli ?-galactosidase and its derivatives by polyacrylamide gel. Biotechnology and Bioengineering, 1988, 31, 829-833.	1.7	29
59	Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochemistry (Moscow), 2011, 76, 686-693.	0.7	29
60	A novel psychrotrophic, solvent tolerant Pseudomonas putida SKG-1 and solvent stability of its psychro-thermoalkalistable protease. Process Biochemistry, 2011, 46, 1430-1435.	1.8	29
61	Biodegradation of Î ³ -hexachlorocyclohexane (lindane) by halophilic bacterium Chromohalobacter sp. LD2 isolated from HCH dumpsite. International Biodeterioration and Biodegradation, 2017, 122, 23-28.	1.9	29
62	Production and characterization of glycolipid biosurfactant from Achromobacter sp. (PS1) isolate using one-factor-at-a-time (OFAT) approach with feasible utilization of ammonia-soaked lignocellulosic pretreated residues. Bioprocess and Biosystems Engineering, 2019, 42, 1301-1315.	1.7	29
63	Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles, 2014, 18, 1057-1066.	0.9	28
64	Synthesis of cost-effective magnetic nano-biocomposites mimicking peroxidase activity for remediation of dyes. Environmental Science and Pollution Research, 2020, 27, 27211-27220.	2.7	28
65	A solvent tolerant isolate of. Bioresource Technology, 2006, 97, 99-103.	4.8	27
66	Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochemistry, 2017, 58, 199-203.	1.8	27
67	Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis. Bioprocess and Biosystems Engineering, 2015, 38, 739-748.	1.7	26
68	One-pot production of lactic acid from rice straw pretreated with ionic liquid. Bioresource Technology, 2021, 323, 124563.	4.8	25
69	An active insoluble aggregate ofE. coli ?-galactosidase. Biotechnology and Bioengineering, 1990, 35, 94-98.	1.7	24
70	Microbial itaconic acid production from starchy food waste by newly isolated thermotolerant Aspergillus terreus strain. Bioresource Technology, 2021, 337, 125426.	4.8	24
71	Immobilization of Xylan-Degrading Enzymes from Scytalidium thermophilum on Eudragit L-100. World Journal of Microbiology and Biotechnology, 2005, 21, 1123-1128.	1.7	23
72	Trends in Oil Production from Oleaginous Yeast Using Biomass: Biotechnological Potential and Constraints. Applied Biochemistry and Microbiology, 2018, 54, 361-369.	0.3	23

#	Article	IF	CITATIONS
73	Use of agarose-entrapped Aspergillus niger cells for the production of citric acid from soy whey. Applied Microbiology and Biotechnology, 1994, 41, 571-573.	1.7	22
74	Cellular response mechanisms in <i>Pseudomonas aeruginosa</i> PseA during growth in organic solvents. Letters in Applied Microbiology, 2009, 49, 372-377.	1.0	22
75	Solid-state fermentation of soyhull for the production of cellulase. Bioresource Technology, 1995, 54, 321-322.	4.8	21
76	Lipase-catalyzed production of a bioactive fatty amide derivative of 7,10-dihydroxy-8(E)-octadecenoic acid. Bioresource Technology, 2009, 100, 1482-1485.	4.8	21
77	Biodegradation of cytotoxic 7-Ketocholesterol by Pseudomonas aeruginosa PseA. Bioresource Technology, 2016, 213, 44-49.	4.8	21
78	Chloride Activated Halophilic <i>α</i> -Amylase from <i>Marinobacter</i> sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis. Enzyme Research, 2015, 2015, 1-9.	1.8	20
79	Applicability of Sporotrichum thermophile xylanase in the in situ saccharification of wheat straw pre-treated with ionic liquids. Process Biochemistry, 2016, 51, 2090-2096.	1.8	20
80	A Review of Bacterial Antibiotic Resistance Genes and Their Removal Strategies from Wastewater. Current Pollution Reports, 2021, 7, 494-509.	3.1	20
81	Immobilization of Cholesterol Oxidase: An Overview. Open Biotechnology Journal, 2018, 12, 176-188.	0.6	20
82	Trans fatty acids in food: A review on dietary intake, health impact, regulations and alternatives. Journal of Food Science, 2021, 86, 5159-5174.	1.5	20
83	Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. Journal of Controlled Release, 2022, 341, 555-565.	4.8	20
84	Purification and characterization of a solvent stable aminopeptidase from Pseudomonas aeruginosa: Cloning and analysis of aminopeptidase gene conferring solvent stability. Process Biochemistry, 2010, 45, 757-764.	1.8	19
85	Biodegradation of 1,1,1-trichloro-2,2- <i>bis</i> (4-chlorophenyl) ethane (DDT) by using <i>Serratia marcescens</i> NCIM 2919. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 809-816.	0.7	19
86	Refolding of thermally denatured cholesterol oxidases by magnetic nanoparticles. International Journal of Biological Macromolecules, 2019, 138, 958-965.	3.6	19
87	Gene Identification and Molecular Characterization of Solvent Stable Protease from A Moderately Haloalkaliphilic Bacterium, Geomicrobium sp. EMB2. Journal of Microbiology and Biotechnology, 2011, 21, 129-135.	0.9	19
88	Protein-Coated Microcrystals of Pseudomonas aeruginosa PseA lipase. Applied Biochemistry and Biotechnology, 2008, 151, 160-166.	1.4	18
89	Biodegradation of 7-Ketocholesterol by Rhodococcus erythropolis MTCC 3951: Process optimization and enzymatic insights. Chemistry and Physics of Lipids, 2017, 207, 253-259.	1.5	18
90	2-Pyrrolidone synthesis from Î ³ -aminobutyric acid produced by Lactobacillus brevis under solid-state fermentation utilizing toxic deoiled cottonseed cake. Bioprocess and Biosystems Engineering, 2017, 40, 145-152.	1.7	17

#	Article	IF	CITATIONS
91	Statistical and sequential (fill-and-draw) approach to enhance rhamnolipid production using industrial lignocellulosic hydrolysate C6 stream from Achromobacter sp. (PS1). Bioresource Technology, 2019, 288, 121494.	4.8	17
92	Immobilization of L-asparaginase on magnetic nanoparticles: Kinetics and functional characterization and applications. Bioresource Technology, 2021, 339, 125599.	4.8	17
93	Preparation of Concanavalin A-β-galactosidase conjugate and its application in lactose hydrolysis. Journal of Biosciences, 1988, 13, 47-54.	0.5	16
94	Purification and characterization of Pseudomonas aeruginosa lipase produced by SSF of deoiled Jatropha seed cake. Biocatalysis and Agricultural Biotechnology, 2013, 2, 32-37.	1.5	16
95	Immobilization of Transglutaminase on multi-walled carbon nanotubes and its application as bioinspired hydrogel scaffolds. International Journal of Biological Macromolecules, 2020, 163, 1747-1758.	3.6	16
96	Halophilic Microorganisms as Sources of Novel Enzymes. , 2012, , 555-579.		15
97	Efficacy of Herbal Drugs in Human Diseases and Disorders. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-2.	0.5	15
98	Potential and Perspective of Castor Biorefinery. , 2018, , 623-656.		15
99	Biologically synthesized silver nanoparticles by Streptomyces sp. EMB24 extracts used against the drug-resistant bacteria. Bioresource Technology Reports, 2021, 15, 100753.	1.5	15
100	Co-production of gamma amino butyric acid (GABA) and lactic acid using Lactobacillus plantarum LP-9 from agro-residues. Environmental Technology and Innovation, 2021, 23, 101650.	3.0	15
101	Recent strategies for inhibiting multidrug-resistant and β-lactamase producing bacteria: A review. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111901.	2.5	15
102	Entrapment of proteins by aggregation within sephadex beads. Applied Biochemistry and Biotechnology, 1991, 27, 205-216.	1.4	14
103	Solvent-Stable <i>Pseudomonas aeruginosa</i> PseA Protease Gene: Identification, Molecular Characterization, Phylogenetic and Bioinformatic Analysis to Study Reasons for Solvent Stability. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 234-243.	1.0	14
104	Induction of xylanase in thermophilic fungi Scytalidium thermophilum and Sporotrichum thermophile. Brazilian Archives of Biology and Technology, 2012, 55, 21-27.	0.5	14
105	Ecological and toxicological manifestations of microplastics: current scenario, research gaps, and possible alleviation measures. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2020, 38, 1-20.	0.4	14
106	Biodegradation of waste grease by Penicillium chrysogenum for production of fatty acid. Bioresource Technology, 2017, 226, 31-38.	4.8	13
107	Bioprospecting microbes for single-cell oil production from starchy wastes. Preparative Biochemistry and Biotechnology, 2018, 48, 296-302.	1.0	13
108	New threatening of SARS-CoV-2 coinfection and strategies to fight the current pandemic. Medicine in Drug Discovery, 2021, 10, 100089.	2.3	13

#	Article	IF	CITATIONS
109	A Proteomic Approach to Understand the Role of the Outer Membrane Porins in the Organic Solvent-Tolerance of Pseudomonas aeruginosa PseA. PLoS ONE, 2014, 9, e103788.	1.1	13
110	Biochemical Basis of Mercury Remediation and Bioaccumulation by Enterobacter sp. EMB21. Applied Biochemistry and Biotechnology, 2013, 169, 256-267.	1.4	12
111	Banana peel waste management for single-cell oil production. Energy, Ecology and Environment, 2018, 3, 296-303.	1.9	12
112	Bread waste to lactic acid: Applicability of simultaneous saccharification and solid state fermentation. Biocatalysis and Agricultural Biotechnology, 2021, 32, 101934.	1.5	12
113	Thermostable Proteases. , 2013, , 859-880.		11
114	EFFICIENT PROTEOLYSIS AND APPLICATION OF AN ALKALINE PROTEASE FROM HALOPHILICBacillussp. EMB9. Preparative Biochemistry and Biotechnology, 2014, 44, 680-696.	1.0	11
115	Synergistic extraction using sweep-floc coagulation and acidification of rhamnolipid produced from industrial lignocellulosic hydrolysate in a bioreactor using sequential (fill-and-draw) approach. Process Biochemistry, 2020, 90, 233-240.	1.8	11
116	Efficient two-step lactic acid production from cassava biomass using thermostable enzyme cocktail and lactic acid bacteria: insights from hydrolysis optimization and proteomics analysis. 3 Biotech, 2020, 10, 409.	1.1	11
117	A crosslinked preparation ofE. coli β-D-galactosidase. Applied Biochemistry and Biotechnology, 1987, 16, 1-13.	1.4	10
118	Structural elucidation and molecular characterization of <i>Marinobacter</i> sp. α-amylase. Preparative Biochemistry and Biotechnology, 2016, 46, 238-246.	1.0	10
119	Efficacy of ionic liquids on the growth and simultaneous xylanase production by Sporotrichum thermophile: membrane integrity, composition and morphological investigation. RSC Advances, 2017, 7, 21114-21123.	1.7	10
120	Potential of ionic liquids for inhibiting the growth and β-lactamase production by Bacillus cereus EMB20. International Journal of Biological Macromolecules, 2018, 107, 1915-1921.	3.6	10
121	Stability and structure of <i>Penicillium chrysogenum</i> lipase in the presence of organic solvents. Preparative Biochemistry and Biotechnology, 2018, 48, 977-982.	1.0	10
122	Efficacy of ureolytic <i>Enterobacter cloacae</i> EMB19 mediated calcite precipitation in remediation of Zn (II). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 536-542.	0.9	10
123	Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions. Environmental Science and Pollution Research, 2021, 28, 46423-46430.	2.7	10
124	Overexpression and repression of key rateâ€imiting enzymes (acetyl CoA carboxylase and HMG) Tj ETQq0 0 0 rgE Microbiology, 2021, 61, 4-14.	3T /Overlo 1.8	ck 10 Tf 50 10
125	Recent perspectives on microbial and ionic liquid interactions with implications for biorefineries. Journal of Molecular Liquids, 2022, 362, 119796.	2.3	10
126	Hydrolysis of flatulence-causing galacto-oligosaccharides by agarose-entrapped Aspergillus oryzae	4.2	9

4.2 9

Hydrolysis of flatulence-causing galacto cells. Food Chemistry, 1994, 51, 29-31. 126

#	Article	IF	CITATIONS
127	Evaluation of hydrolytic enzymes in bioaugmented compost of Jatropha cake under aerobic and partial anaerobic conditions. Annals of Microbiology, 2010, 60, 685-691.	1.1	9
128	Statistical optimization of palm oil hydrolysis by <i>Pseudomonas aeruginosa</i> PseA lipase. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 147-153.	0.8	9
129	Screening of lactic acid bacteria stable in ionic liquids and lignocellulosic by-products for bio-based lactic acid production. Bioresource Technology Reports, 2020, 11, 100423.	1.5	9
130	Sustainable Options for Mitigation of Major Toxicants Originating from Electronic Waste. Current Science, 2016, 111, 1946.	0.4	9
131	Molecular Basis of Nanotoxicity and Interaction of Microbial Cells with Nanoparticles. Current Biotechnology, 2013, 2, 64-72.	0.2	8
132	Utilization of agro-industrial waste for production of Transglutaminase from Streptomyces mobaraensis. Bioresource Technology, 2019, 287, 121391.	4.8	8
133	Differential interactions of halophilic and non-halophilic proteases with nanoparticles. Sustainable Chemical Processes, 2014, 2, .	2.3	7
134	Three phase partitioning and spectroscopic characterization of bioactive constituent from halophilic Bacillus subtilis EMB M15. Bioresource Technology, 2017, 242, 283-286.	4.8	7
135	Adverse effect of CdTe quantum dots on the cell membrane of Bacillus subtilis : Insight from microscopy. Nano Structures Nano Objects, 2017, 12, 19-26.	1.9	7
136	Halophilic lipase does forms catalytically active aggregates: Evidence from Marinobacter sp. EMB5 lipase (LipEMB5). International Journal of Biological Macromolecules, 2018, 119, 172-179.	3.6	7
137	Secretome Analysis and Bioprospecting of Lignocellulolytic Fungal Consortium for Valorization of Waste Cottonseed Cake by Hydrolase Production and Simultaneous Gossypol Degradation. Waste and Biomass Valorization, 2020, 11, 2533-2548.	1.8	7
138	Cellular adaptation responses in a halotolerant Exiguobacterium exhibiting organic solvent tolerance with simultaneous protease production. Environmental Technology and Innovation, 2021, 23, 101803.	3.0	7
139	Manganese: Its Speciation, Pollution and Microbial Mitigation. International Journal of Applied Sciences and Biotechnology, 2013, 1, 162-170.	0.4	6
140	Structural Changes in Halophilic and Non-halophilic Proteases in Response to Chaotropic Reagents. Protein Journal, 2014, 33, 394-402.	0.7	6
141	Structure and Functional Characterisation of a Distinctive β-Lactamase from an Environmental Strain EMB20 of Bacillus cereus. Applied Biochemistry and Biotechnology, 2018, 184, 197-211.	1.4	6
142	Camelina sativa: An Emerging Biofuel Crop. , 2018, , 1-38.		6
143	Microbial Diversity of Saline Habitats: An Overview of Biotechnological Applications. Soil Biology, 2019, , 65-92.	0.6	6
144	Heavy Metal Bioremediation and Nanoparticle Synthesis by Metallophiles. Soil Biology, 2014, , 101-118.	0.6	6

#	Article	IF	CITATIONS
145	Molecular and structural insights of \hat{l}^2 -boswellic acid and glycyrrhizic acid as potent SARS-CoV-2 Envelope protein inhibitors. Phytomedicine Plus, 2022, 2, 100241.	0.9	6
146	Potent Î ³ -amino butyric acid producing psychobioticÂLactococcus lactis LP-68 from non-rhizospheric soil of Syzygium cumini (Black plum). Archives of Microbiology, 2022, 204, 82.	1.0	6
147	Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Critical Reviews in Food Science and Nutrition, 2023, 63, 10047-10078.	5.4	6
148	Title is missing!. Biotechnology Letters, 2002, 24, 2005-2009.	1.1	5
149	Solvent tolerant Pseudomonads as a source of novel lipases for applications in non-aqueous systems. Biocatalysis and Biotransformation, 2011, 29, 161-171.	1.1	5
150	Lipolytic Enzymes. , 2017, , 175-198.		5
151	Production of single cell oil by using cassava peel substrate from oleaginous yeast Rhodotorula glutinis. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101308.	1.5	5
152	Environmentâ€Friendly Synergistic Abiotic Stress for Enhancing the Yield of Lipids from Oleaginous Yeasts. European Journal of Lipid Science and Technology, 0, , 2000376.	1.0	5
153	Effect of key regulators in augmenting transcriptional expression of Transglutaminase in Streptomyces mobaraensis. Bioresource Technology, 2021, 340, 125627.	4.8	5
154	An Innovative Prosopis cineraria Pod Aqueous Waste as Natural Inhibitor for Enhancing Unsaturated Lipids Production in Yeast Cell Using Banana Peel. Waste and Biomass Valorization, 2022, 13, 3113-3126.	1.8	5
155	Alkaline lipase production from Enterobacter aerogenes by solid-state fermentation of agro-industrial wastes. International Journal of Environment and Waste Management, 2010, 5, 410.	0.2	4
156	Antioxidant and Antimicrobial Activity in Some Indian Herbal Plants: Protective Effect against Free Radical Mediated DNA Damage. Journal of Plant Biochemistry and Biotechnology, 2010, 19, 229-233.	0.9	4
157	Downstream processing, characterization, and structure–function relationship of solventâ€, detergentâ€, psychroâ€, thermoâ€, alkalistable metalloprotease from metalâ€, solventâ€tolerant psychrotrophic <i>Pseudomonas putida</i> SKGâ€1 isolate. Biotechnology Progress, 2013, 29, 99-108.	1.3	4
158	Biodegradation of 4-chlorobiphenyl by using induced cells and cell extract ofBurkholderia xenovorans. Bioremediation Journal, 2017, 21, 109-118.	1.0	4
159	Role of Musa paradisiaca ascorbate peroxidase in the transformation of methyl phenyl sulfide to its sulfoxide. International Journal of Biological Macromolecules, 2019, 122, 962-968.	3.6	4
160	Stability of Therapeutic Enzymes: Challenges and Recent Advances. Advances in Experimental Medicine and Biology, 2019, 1148, 131-150.	0.8	4
161	Effect of Nanomaterials and Their Possible Implication on the Plants. , 2019, , 213-229.		4
162	Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC Advances, 2021, 11, 34613-34630.	1.7	4

#	Article	IF	CITATIONS
163	Utilizing the ß-lactam hydrolyzing activity of ß-lactamase produced by Bacillus cereus EMB20 for remediation of ß-lactam antibiotics. International Biodeterioration and Biodegradation, 2022, 168, 105363.	1.9	4
164	Ionic Liquid Stable Cellulases and Hemicellulases: Application in Biobased Production of Biofuels. , 2018, , 505-532.		3
165	Proteomic profiling of Sporotrichum thermophile under the effect of ionic liquids: manifestation of an oxidative stress response. 3 Biotech, 2019, 9, 240.	1.1	3
166	Agroindustrial waste based biorefineries for sustainable production of lactic acid. , 2020, , 125-153.		3
167	Effect of Psidium guajava leaves extracts on thermo-lipid oxidation and Maillard pathway born food toxicant acrylamide in Indian staple food. Journal of Food Science and Technology, 2022, 59, 86-94.	1.4	3
168	Effect of CeO2 Nanoparticles on Germination and Total Proteins Pattern of Brassica nigra Seeds. Current Bionanotechnology, 2017, 2, 122-126.	0.6	3
169	A Chemosensor Based on Gold Nanoparticles and Dithiothreitol (DTT) for Acrylamide Electroanalysis. Nanomaterials, 2021, 11, 2610.	1.9	3
170	Camelina sativa: An Emerging Biofuel Crop. , 2019, , 2889-2925.		3
171	Lipases as Biocatalyst for Production of Biolubricants. , 2016, , 187-203.		2
172	Immobilization of A. oryzae β-galactosidase on Silica Nanoparticles: Development of an Effective Biosensor for Determination of Lactose in Milk Whey. , 2017, , 3-18.		2
173	An Overview of Enzymes and Rate-Limiting Steps Responsible for Lipid Production in Oleaginous Yeast. Industrial Biotechnology, 2022, 18, 20-31.	0.5	2
174	Genome Sequence Analysis of <i>Exiguobacterium</i> sp. Strain TBG-PICH-001, Isolated from Pichavaram Mangrove Forest in South India. Microbiology Resource Announcements, 2022, 11, e0009622.	0.3	2
175	Preparation of soya bean meal protein hydrolysate by agarose-entrapped Bacillus subtilis cells. Food Chemistry, 1994, 50, 121-123.	4.2	1
176	Purification of an Enterobacter aerogenes plasmid DNA using MnCl2 as compaction agent. Analytical Biochemistry, 2003, 321, 256-258.	1.1	1
177	Multi-omic Approaches for Mapping Interactions Among Marine Microbiomes. , 2017, , 353-368.		1
178	Lactic Acid Bacteria for Production of Platform Chemicals: A Dark Horse in the Field of Industrial Biotechnology, Environmental and Microbial Biotechnology, 2021, , 3-25.	0.4	1
179	Sporotrichum thermophile Xylanases and Their Biotechnological Applications. , 2019, , 307-328.		1
180	Comparative Proteomic Insights on Responses of Gram-positive and Gram-negative Halophilic Bacteria Grown in Two Different Salt Concentrations. Current Proteomics, 2017, 14, .	0.1	1

#	Article	IF	CITATIONS
181	Editorial: Mining, Designing, Mechanisms and Applications of Extremophilic Enzymes. Frontiers in Microbiology, 2021, 12, 709377.	1.5	1
182	Secretome Analysis of a Pseudomonas aeruginosa Strain Grown Under High Alkane Stress. Current Proteomics, 2015, 12, 202-208.	0.1	1
183	Green lactic acid production using low-cost renewable sources and potential applications. , 2022, , 345-365.		1
184	Sustainable production of succinic acid by utilization of agricultural wastes. , 2022, , 463-480.		1
185	Kinetics of epoxidation by a Musa paradisiaca chloroperoxidase. International Journal of Chemical Kinetics, 2019, 51, 602-609.	1.0	0
186	Recovery and purification of industrial enzymes. , 2021, , 59-75.		0
187	Applications of Enzymes and Membrane Technology in Fat and Oil Processing Processing. , 2000, , 70-89.		0
188	Immobilization of cholesterol oxidase: An overview. Current Bionanotechnology, 2018, 04, .	0.6	0