
## Massimiliano Favalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5907499/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reconstruction of the 2002 tsunami at Stromboli using the non-hydrostatic WAVE model (NHWAVE).<br>Geological Society Special Publication, 2024, 519, 107-130.                                       | 0.8 | 0         |
| 2  | Subaerial-submarine morphological changes at Stromboli volcano (Italy) induced by the 2019–2020<br>eruptive activity. Geomorphology, 2022, 400, 108093.                                             | 1.1 | 12        |
| 3  | Forest destruction by â€~aâ€~Ä•lava flow during Etna's 2002–03 eruption: Mechanical, thermal, and<br>environmental interactions. Journal of Volcanology and Geothermal Research, 2022, 429, 107621. | 0.8 | Ο         |
| 4  | The 2004–2005ÂMt. Etna Compound Lava Flow Field: A Retrospective Analysis by Combining Remote and<br>Field Methods. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020499.         | 1.4 | 8         |
| 5  | Lava flow hazard map of Piton de la Fournaise volcano. Natural Hazards and Earth System Sciences, 2021, 21, 2355-2377.                                                                              | 1.5 | 19        |
| 6  | The 1974 West Flank Eruption of Mount Etna: A Data-Driven Model for a Low Elevation Effusive Event.<br>Frontiers in Earth Science, 2020, 8, .                                                       | 0.8 | 2         |
| 7  | Catching Geomorphological Response to Volcanic Activity on Steep Slope Volcanoes Using<br>Multi-Platform Remote Sensing. Remote Sensing, 2020, 12, 438.                                             | 1.8 | 24        |
| 8  | Influence of Topographic Resolution and Accuracy on Hydraulic Channel Flow Simulations: Case<br>Study of the Versilia River (Italy). Remote Sensing, 2019, 11, 1630.                                | 1.8 | 10        |
| 9  | Application of an ultra-wide band sensor-free wireless network for ground monitoring. Engineering<br>Geology, 2018, 238, 1-14.                                                                      | 2.9 | 26        |
| 10 | The 2014 Effusive Eruption at Stromboli: New Insights from In Situ and Remote-Sensing Measurements.<br>Remote Sensing, 2018, 10, 2035.                                                              | 1.8 | 41        |
| 11 | UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava<br>flows. Bulletin of Volcanology, 2018, 80, 1.                                                | 1.1 | 51        |
| 12 | Visualization and comparison of DEM-derived parameters. Application to volcanic areas.<br>Geomorphology, 2017, 290, 69-84.                                                                          | 1.1 | 25        |
| 13 | Seismic lines Offshore Mount Etna (SOME): open database. Annals of Geophysics, 2017, 60, .                                                                                                          | 0.5 | 1         |
| 14 | Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015 eruption. Natural<br>Hazards and Earth System Sciences, 2016, 16, 1925-1951.                                           | 1.5 | 69        |
| 15 | Simulating the area covered by lava flows using the DOWNFLOW code. Geological Society Special Publication, 2016, 426, 293-312.                                                                      | 0.8 | 7         |
| 16 | Volcanic field elongation, vent distribution, and tectonic evolution of a continental rift: The Main<br>Ethiopian Rift example. , 2016, 12, 706-720.                                                |     | 28        |
| 17 | Lidar surveys reveal eruptive volumes and rates at Etna, 2007–2010. Geophysical Research Letters, 2016,<br>43, 4270-4278.                                                                           | 1.5 | 38        |
| 18 | Crystal size distributions of plagioclase in lavas from the July–August 2001 Mount Etna eruption.<br>Bulletin of Volcanology, 2015, 77, 1.                                                          | 1.1 | 16        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Uncertainties in lava flow hazard maps derived from numerical simulations: The case study of Mount<br>Etna. Journal of Volcanology and Geothermal Research, 2013, 260, 90-102.            | 0.8 | 17        |
| 20 | Dispersion index of topographic surfaces. Geomorphology, 2012, 153-154, 169-178.                                                                                                          | 1.1 | 7         |
| 21 | Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Computers and Geosciences, 2012, 38, 168-170. | 2.0 | 194       |
| 22 | Morphometry of scoria cones, and their relation to geodynamic setting: A DEM-based analysis. Journal of Volcanology and Geothermal Research, 2012, 217-218, 56-72.                        | 0.8 | 67        |
| 23 | Morphometric analysis of lava flow units: Case study over LIDAR-derived topography at Mount Etna,<br>Italy. Journal of Volcanology and Geothermal Research, 2012, 235-236, 11-22.         | 0.8 | 22        |
| 24 | Lava flow hazard and risk at Mt. Cameroon volcano. Bulletin of Volcanology, 2012, 74, 423-439.                                                                                            | 1.1 | 54        |
| 25 | Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna. Journal of Volcanology and Geothermal Research, 2011, 204, 27-39.                                               | 0.8 | 35        |
| 26 | Hazard assessment at Mount Etna using a hybrid lava flow inundation model and satellite-based land<br>classification. Natural Hazards, 2011, 58, 1001-1027.                               | 1.6 | 35        |
| 27 | The distal segment of Etna's 2001 basaltic lava flow. Bulletin of Volcanology, 2010, 72, 119-127.                                                                                         | 1.1 | 29        |
| 28 | Detecting short-term evolution of Etnean scoria cones: a LIDAR-based approach. Bulletin of Volcanology, 2010, 72, 1209-1222.                                                              | 1.1 | 36        |
| 29 | Changes of the susceptibility to lava flow invasion induced by morphological modifications of an active volcano: the case of Mount Etna, Italy. Natural Hazards, 2010, 54, 537-546.       | 1.6 | 22        |
| 30 | The regular shape of stratovolcanoes: A DEM-based morphometrical approach. Journal of<br>Volcanology and Geothermal Research, 2010, 193, 171-181.                                         | 0.8 | 39        |
| 31 | A microscopic information system (MIS) for petrographic analysis. Computers and Geosciences, 2010, 36, 665-674.                                                                           | 2.0 | 40        |
| 32 | A relation between lava discharge rate, thermal insulation, and flow area set using lidar data.<br>Geophysical Research Letters, 2010, 37, .                                              | 1.5 | 34        |
| 33 | Lava flow hazard at Nyiragongo Volcano, DRC. Bulletin of Volcanology, 2009, 71, 375-387.                                                                                                  | 1.1 | 31        |
| 34 | Lava flow hazard at Nyiragongo volcano, D.R.C Bulletin of Volcanology, 2009, 71, 363-374.                                                                                                 | 1.1 | 57        |
| 35 | Construction dynamics of a lava channel. Bulletin of Volcanology, 2009, 71, 459-474.                                                                                                      | 1.1 | 42        |
| 36 | LIDAR strip adjustment: Application to volcanic areas. Geomorphology, 2009, 111, 123-135.                                                                                                 | 1.1 | 61        |

Massimiliano Favalli

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Topographic control on lava flow paths at Mount Etna, Italy: Implications for hazard assessment.<br>Journal of Geophysical Research, 2009, 114, .                                  | 3.3 | 38        |
| 38 | Seismic and landslide source of the 1908 Straits of Messina tsunami (Sicily, Italy). Geophysical<br>Research Letters, 2009, 36, .                                                  | 1.5 | 44        |
| 39 | Reply to comment by Luigi Vigliotti on "Lost tsunamiâ€: Geophysical Research Letters, 2008, 35, .                                                                                  | 1.5 | 1         |
| 40 | Reply to comments by E. Galili et al. on "Holocene tsunami's from Mount Etna and the fate of Israeli<br>Neolithic communities― Geophysical Research Letters, 2008, 35, .           | 1.5 | 2         |
| 41 | Lava flow identification and aging by means of lidar intensity: Mount Etna case. Journal of<br>Geophysical Research, 2007, 112, .                                                  | 3.3 | 58        |
| 42 | Best-fit results from application of a thermo-rheological model for channelized lava flow to high spatial resolution morphological data. Geophysical Research Letters, 2007, 34, . | 1.5 | 33        |
| 43 | Holocene tsunamis from Mount Etna and the fate of Israeli Neolithic communities. Geophysical<br>Research Letters, 2007, 34, .                                                      | 1.5 | 18        |
| 44 | Reply to:. Bulletin of Volcanology, 2007, 70, 117-118.                                                                                                                             | 1.1 | 0         |
| 45 | Large submarine landslides offshore Mt. Etna. Geophysical Research Letters, 2006, 33, .                                                                                            | 1.5 | 39        |
| 46 | Impact of the Minoan tsunami of Santorini: Simulated scenarios in the eastern Mediterranean.<br>Geophysical Research Letters, 2006, 33, n/a-n/a.                                   | 1.5 | 38        |
| 47 | Lost tsunami. Geophysical Research Letters, 2006, 33, .                                                                                                                            | 1.5 | 38        |
| 48 | Forecasting lava flow paths by a stochastic approach. Geophysical Research Letters, 2005, 32, .                                                                                    | 1.5 | 104       |
| 49 | Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne<br>laser altimeter data. Geophysical Research Letters, 2005, 32, n/a-n/a.           | 1.5 | 67        |
| 50 | Role of local wind circulation in plume monitoring at Mt. Etna volcano (Sicily): Insights from a mesoscale numerical model. Geophysical Research Letters, 2004, 31, n/a-n/a.       | 1.5 | 24        |
| 51 | Digital elevation model construction from structured topographic data: The DEST algorithm. Journal of Geophysical Research, 2004, 109, .                                           | 3.3 | 46        |
| 52 | The DEM or Mt. Etna: geomorphological and structural implications. Geodinamica Acta, 1999, 12, 279-290.                                                                            | 2.2 | 26        |