List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5907358/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast microwave-assisted synthesis of iron–palladium catalysts supported on graphite for the direct synthesis of H2O2. Catalysis Today, 2023, 411-412, 113821.	4.4	3
2	Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous and Mesoporous Materials, 2021, 316, 110985.	4.4	61
3	Metal-free aerobic oxidative desulfurization over a diethyltriamine-functionalized aromatic porous polymer. Fuel Processing Technology, 2021, 215, 106741.	7.2	18
4	Direct synthesis of hydrogen peroxide over palladium catalysts supported on glucose-derived amorphous carbons. Korean Journal of Chemical Engineering, 2021, 38, 1139-1148.	2.7	5
5	Direct synthesis of H2O2 over acid-treated Pd/C catalyst derived from a Pd-Co core-shell structure. Catalysis Today, 2020, 352, 270-278.	4.4	16
6	Pd nanoparticles on a dual acid-functionalized porous polymer for direct synthesis of H2O2: Contribution by enhanced H2 storage capacity. Journal of Industrial and Engineering Chemistry, 2020, 81, 375-384.	5.8	14
7	Geometric, electronic, and synergistic effect in the sulfonated carbon-supported Pd catalysts for the direct synthesis of hydrogen peroxide. Applied Catalysis A: General, 2020, 607, 117867.	4.3	15
8	Minimizing energy demand and environmental impact for sustainable NH3 and H2O2 production—A perspective on contributions from thermal, electro-, and photo-catalysis. Applied Catalysis A: General, 2020, 594, 117419.	4.3	32
9	Direct synthesis of H2O2 over Pd/C catalysts prepared by the incipient wetness impregnation method: Effect of heat treatment on catalytic activity. Korean Journal of Chemical Engineering, 2020, 37, 65-71.	2.7	13
10	An efficient Pd/C catalyst design based on sequential ligand exchange method for the direct synthesis of H2O2. Materials Letters, 2019, 234, 58-61.	2.6	18
11	One-pot cascade deacetalization and nitroaldol condensation over acid–base bifunctional ZIF-8 catalyst. Research on Chemical Intermediates, 2018, 44, 3673-3685.	2.7	17
12	Pd nanoparticles on a microporous covalent triazine polymer for H2 production via formic acid decomposition. Materials Letters, 2018, 215, 211-213.	2.6	20
13	Preparation of chemically uniform and monodisperse microparticles as highly efficient solid acid catalysts for aldol condensation. Chemical Engineering Science, 2018, 175, 168-174.	3.8	13
14	Transfer hydrogenation of nitrobenzene to aniline in water using Pd nanoparticles immobilized on amine-functionalized UiO-66. Catalysis Today, 2018, 303, 227-234.	4.4	49
15	Direct synthesis of hydrogen peroxide over Pd/C catalyst prepared by selective adsorption deposition method. Journal of Catalysis, 2018, 365, 125-137.	6.2	31
16	Hydrogen production from formic acid dehydrogenation over Pd/C catalysts: Effect of metal and support properties on the catalytic performance. Applied Catalysis B: Environmental, 2017, 210, 212-222.	20.2	100
17	Exfoliated HNb3O8 nanosheets of enhanced acidity prepared by efficient contact of K2CO3 with Nb2O5. Advanced Powder Technology, 2017, 28, 2524-2531.	4.1	6
18	Dual-functionalized porous organic polymer as reusable catalyst for one-pot cascade C C bond-forming reactions. Molecular Catalysis, 2017, 441, 1-9.	2.0	20

#	Article	IF	CITATIONS
19	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by using Ultrasmall Rh Nanoparticles Embedded on Diamineâ€Functionalized KITâ€6. ChemCatChem, 2017, 9, 4570-4579.	3.7	47
20	Exfoliated Pd/HNb3O8 nanosheet as highly efficient bifunctional catalyst for one-pot cascade reaction. Applied Surface Science, 2016, 370, 160-168.	6.1	13
21	Microfluidic preparation of a highly active and stable catalyst by high performance of encapsulation of polyvinylpyrrolidone (PVP)-Pt nanoparticles in microcapsules. Journal of Colloid and Interface Science, 2016, 464, 246-253.	9.4	33
22	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd-supported HNb3O8 metal oxide nanosheet catalyst. Research on Chemical Intermediates, 2016, 42, 95-108.	2.7	12
23	Effect of Crosslinker Contents on the Properties of Sulfonated Polystyrene/Trimethylolpropane Ethoxylate Triacrylate (SPS/TMPETA) Membranes Prepared by Electron Beam Irradiation. Porrime, 2016, 40, 47.	0.2	0
24	Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Pdâ€supported Metalâ€Organic Framework Catalysts. Bulletin of the Korean Chemical Society, 2015, 36, 1378-1383.	1.9	13
25	A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H ₂ O ₂ by Using Polyelectrolyte Multilayers. Korean Chemical Engineering Research, 2015, 53, 262-268.	0.2	1
26	A new site-isolated acid–base bifunctional metal–organic framework for one-pot tandem reaction. RSC Advances, 2014, 4, 23064.	3.6	61
27	Friedel–Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates. Catalysis Letters, 2014, 144, 817-824.	2.6	57
28	Aldol Condensation over Acid-Base Bifunctional Metal-Organic Framework Catalysts. Clean Technology, 2014, 20, 116-122.	0.1	1
29	Highly Selective Bimetallic Ptâ€Cu/Mg(Al)O Catalysts for the Aqueousâ€Phase Reforming of Glycerol. ChemCatChem, 2013, 5, 529-537.	3.7	34
30	A study of the palladium size effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen using highly uniform palladium nanoparticles supported on carbon. Korean Journal of Chemical Engineering, 2012, 29, 1115-1118.	2.7	13
31	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd/HZSM-5 catalysts: Effect of Brönsted acidity. Journal of Molecular Catalysis A, 2012, 363-364, 230-236.	4.8	36
32	Palladium Nanocatalysts Immobilized on Functionalized Resin for the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. ACS Catalysis, 2012, 2, 1042-1048.	11.2	61
33	Production of Biohydrogen by Aqueous Phase Reforming of Polyols over Platinum Catalysts Supported on Threeâ€Dimensionally Bimodal Mesoporous Carbon. ChemSusChem, 2012, 5, 629-633.	6.8	22
34	Direct synthesis of H2O2 from H2 and O2 over Pd catalyst supported on Cs2.5H0.5PW12O40-MCF silica. Catalysis Today, 2012, 185, 162-167.	4.4	7
35	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd/CsXH3â^`XPW12O40/MCF (X=1.7, 2.0, 2.2, 2.5, and 2.7) catalysts. Journal of Molecular Catalysis A, 2012, 353-354, 37-43.	4.8	21
36	Direct synthesis of H2O2 catalyzed by Pd nanoparticles encapsulated in the multi-layered polyelectrolyte nanoreactors on a charged sphere. Chemical Communications, 2011, 47, 5705.	4.1	21

#	Article	IF	CITATIONS
37	Spatial and temporal mapping of coke formation during paraffin and olefin aromatization in individual H-ZSM-5 crystals. Applied Catalysis A: General, 2011, 404, 12-20.	4.3	18
38	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized MCF silica: Effect of calcination temperature of mesostructured cellular foam silica. Korean Journal of Chemical Engineering, 2011, 28, 1359-1363.	2.7	13
39	Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5. Korean Journal of Chemical Engineering, 2011, 28, 744-750.	2.7	27
40	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on H3PW12O40-incorporated MCF silica. Journal of Molecular Catalysis A, 2011, 336, 78-86.	4.8	15
41	10.2478/s11814-009-0165-z. , 2011, 26, 994.		0
42	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over insoluble Pd0.15M2.5H0.2PW12O40 (MÂ=ÂK, Rb, and Cs) heteropolyacid catalysts. Research on Chemical Intermediates, 2010, 36, 639-646.	2.7	11
43	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized mesoporous silica. Journal of Molecular Catalysis A, 2010, 319, 98-107.	4.8	41
44	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over insoluble Cs2.5H0.5PW12O40 heteropolyacid supported on Pd/MCF. Journal of Molecular Catalysis A, 2010, 332, 76-83.	4.8	21
45	Solventâ€Resistant PDMS Microfluidic Devices with Hybrid Inorganic/Organic Polymer Coatings. Advanced Functional Materials, 2009, 19, 3796-3803.	14.9	91
46	Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene Over ZnMelIIFeO4 Catalysts: Effect of Trivalent Metal (MeIII). Catalysis Letters, 2009, 131, 344-349.	2.6	19
47	Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen Over Palladium Catalysts Supported on SO3H-Functionalized SiO2 and TiO2. Catalysis Letters, 2009, 130, 604-607.	2.6	20
48	Factors Affect on the Reaction Performance of the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene Over Zn-Ferrite Catalysts. Catalysis Letters, 2009, 130, 417-423.	2.6	10
49	Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladium Catalyst Supported on SO3H-Functionalized SBA-15. Catalysis Letters, 2009, 130, 296-300.	2.6	19
50	Prevention of Catalyst Deactivation in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene over Zn-Ferrite Catalysts. Catalysis Letters, 2009, 131, 579-586.	2.6	19
51	Effect of Cs x H3â^'x PW12O40 addition on the catalytic performance of ZnFe2O4 in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Korean Journal of Chemical Engineering, 2009, 26, 994-998.	2.7	18
52	Oxidative dehydrogenation of n-butene to 1,3-butadiene over multicomponent bismuth molybdate (MII9Fe3Bi1Mo12O51) catalysts: Effect of divalent metal (MII). Catalysis Today, 2009, 141, 325-329.	4.4	16
53	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium-exchanged insoluble heteropolyacid catalysts. Catalysis Communications, 2009, 10, 391-394.	3.3	56
54	Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab on A Chip, 2009, 9, 2596.	6.0	75

#	Article	IF	CITATIONS
55	Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalysts supported on TiO2–ZrO2 mixed metal oxides. Catalysis Communications, 2009, 10, 1762-1765.	3.3	19
56	Preparation of ZnFe2O4 Catalysts by a Co-precipitation Method Using Aqueous Buffer Solution and Their Catalytic Activity for Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene. Catalysis Letters, 2008, 122, 281-286.	2.6	35
57	Epoxidation of Propylene with Hydrogen Peroxide Over TS-1 Catalyst Synthesized in the Presence of Polystyrene. Catalysis Letters, 2008, 122, 349-353.	2.6	20
58	Oxidative Dehydrogenation of C4 Raffinate-3 to 1,3-Butadiene in a Dual-bed Reaction System Comprising ZnFe2O4 and Co9Fe3Bi1Mo12O51 Catalysts: A Synergistic Effect of ZnFe2O4 and Co9Fe3Bi1Mo12O51 Catalysts. Catalysts. Catalysis Letters, 2008, 123, 239-245.	2.6	9
59	Effect of Oxygen Capacity and Oxygen Mobility of Pure Bismuth Molybdate and Multicomponent Bismuth Molybdate on their Catalytic Performance in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene. Catalysis Letters, 2008, 124, 262-267.	2.6	25
60	Effect of Divalent Metal Component (MeII) on the Catalytic Performance of MeIIFe2O4 Catalysts in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene. Catalysis Letters, 2008, 124, 364-368.	2.6	31
61	Preparation, characterization and catalytic activity of Biâ^'Mo-based catalysts for the oxidative dehydrogenation ofn-butene to 1,3-butadiene. Research on Chemical Intermediates, 2008, 34, 827-833.	2.7	5
62	Effect of reaction conditions on the catalytic performance of Co9Fe3Bi1Mo12O51 in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Korean Journal of Chemical Engineering, 2008, 25, 1316-1321.	2.7	26
63	p-Aminophenol synthesis in an organic/aqueous system using Pt supported on mesoporous carbons. Applied Catalysis A: General, 2008, 337, 97-104.	4.3	73
64	Catalytic performance of multicomponent bismuth molybdates (Ni Fe3Bi1Mo12O42+) in the oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene: Effect of nickel content and acid property. Catalysis Communications, 2008, 9, 447-452.	3.3	24
65	Effect of pH in the preparation of Ni9Fe3Bi1Mo12O51 for oxidative dehydrogenation of n-butene to 1,3-butadiene: Correlation between catalytic performance and oxygen mobility of Ni9Fe3Bi1Mo12O51. Catalysis Communications, 2008, 9, 943-949.	3.3	20
66	Effect of pH in the preparation of ZnFe2O4 for oxidative dehydrogenation of n-butene to 1,3-butadiene: Correlation between catalytic performance and surface acidity of ZnFe2O4. Catalysis Communications, 2008, 9, 1137-1142.	3.3	46
67	Reactivity of n-butene isomers over a multicomponent bismuth molybdate (Co9Fe3Bi1Mo12O51) catalyst in the oxidative dehydrogenation of n-butene. Catalysis Communications, 2008, 9, 1676-1680.	3.3	16
68	Effect of calcination temperature on the catalytic performance of Co9Fe3Bi1Mo12O51 in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Catalysis Communications, 2008, 9, 2059-2062.	3.3	13
69	Direct epoxidation of propylene with hydrogen peroxide over TS-1 catalysts: Effect of hydrophobicity of the catalysts. Catalysis Communications, 2008, 9, 2485-2488.	3.3	47
70	Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab on A Chip, 2008, 8, 1544.	6.0	80
71	Selective Patterning of Quantum Dots on Functionalized Surface Using Polyelectrolyte Transfer. Molecular Crystals and Liquid Crystals, 2008, 492, 90/[454]-101/[465].	0.9	0
72	Preparation and Characterization of Bismuth Molybdate Catalyst for Oxidative Dehydrogenation of n-Butene into 1,3-Butadiene. Solid State Phenomena, 2007, 119, 251-254.	0.3	4

#	Article	IF	CITATIONS
73	Effect of pH in the preparation of γ-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1,3-butadiene: Correlation between catalytic performance and oxygen mobility of γ-Bi2MoO6. Catalysis Communications, 2007, 8, 625-628.	3.3	32
74	Catalytic performance of bismuth molybdate catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene. Applied Catalysis A: General, 2007, 317, 244-249.	4.3	41
75	Unusual catalytic behavior of β-Bi2Mo2O9 in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Journal of Molecular Catalysis A, 2007, 264, 237-240.	4.8	20
76	A synergistic effect of α-Bi2Mo3O12 and γ-Bi2MoO6 catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene. Journal of Molecular Catalysis A, 2007, 271, 261-265.	4.8	31
77	Preparation, characterization, and catalytic activity of bismuth molybdate catalysts for the oxidative dehydrogenation of n-butene into 1,3-butadiene. Journal of Molecular Catalysis A, 2006, 259, 166-170.	4.8	34
78	Synthesis and Catalytic Applications of Dendrimer-Templated Bimetallic Nanoparticles. ChemInform, 2005, 36, no.	0.0	0
79	Synthesis and Catalytic Applications of Dendrimer-Templated Bimetallic Nanoparticles. Catalysis Surveys From Asia, 2004, 8, 211-223.	2.6	31
80	Internal/External use of dendrimer in catalysis. Korean Journal of Chemical Engineering, 2004, 21, 81-97.	2.7	20
81	Partial hydrogenation of 1,3-cyclooctadiene catalyzed by palladium-complex catalysts immobilized on silica. Catalysis Today, 2004, 93-95, 445-450.	4.4	19
82	Silica-Supported Dendritic Chiral Auxiliaries for Enantioselective Addition of Diethylzinc to Benzaldehyde. ChemInform, 2004, 35, no.	0.0	0
83	Dendrimer-templated Agî—,Pd bimetallic nanoparticles. Journal of Colloid and Interface Science, 2004, 271, 131-135.	9.4	61
84	Pt-Pd Bimetallic Nanoparticles Encapsulated in Dendrimer Nanoreactor. Catalysis Letters, 2003, 85, 159-164.	2.6	109
85	Silica-supported dendritic chiral auxiliaries for enantioselective addition of diethylzinc to benzaldehyde. Comptes Rendus Chimie, 2003, 6, 695-705.	0.5	15
86	Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd–Rh bimetallic nanoparticles. Journal of Molecular Catalysis A, 2003, 206, 291-298.	4.8	103
87	Dendritic chiral auxiliaries on silica: a new heterogeneous catalyst for enantioselective addition of diethylzinc to benzaldehyde. Chemical Communications, 2002, , 238-239.	4.1	52
88	Title is missing!. Catalysis Letters, 2002, 82, 249-253.	2.6	22
89	Solvent effects in the liquid-phase Beckmann rearrangement of oxime over H-Beta catalyst II: adsorption and FT-IR studies. Journal of Molecular Catalysis A, 2001, 175, 249-257.	4.8	25
90	Solvent effects in the liquid phase Beckmann rearrangement of 4-hydroxyacetophenone oxime over H-Beta catalyst. Journal of Molecular Catalysis A, 2000, 159, 389-396.	4.8	21

#	Article	IF	CITATIONS
91	Homogeneous and biphasic autoxidation of tetralin catalyzed by transition metal salts and complexes. Journal of Molecular Catalysis A, 1999, 137, 23-29.	4.8	12
92	Biphasic coupling polymerization of 2,6-dimethylphenol using surface-active copper complex catalysts. Journal of Molecular Catalysis A, 1999, 148, 117-126.	4.8	21