

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5906423/publications.pdf Version: 2024-02-01



ΒλΟ ΤΗ

| #  | Article                                                                                                                                                                                                                                      | IF     | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1  | Moleculeâ€Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite<br>Solar Cell. Advanced Materials, 2018, 30, e1800515.                                                                                    | 21.0   | 287       |
| 2  | Dopantâ€Free Smallâ€Molecule Holeâ€Transporting Material for Inverted Perovskite Solar Cells with<br>Efficiency Exceeding 21%. Advanced Materials, 2019, 31, e1902781.                                                                       | 21.0   | 268       |
| 3  | Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite<br>Solar Cells. Advanced Energy Materials, 2019, 9, 1803872.                                                                             | 19.5   | 236       |
| 4  | Novel Molecular Doping Mechanism for nâ€Doping of SnO <sub>2</sub> via Triphenylphosphine Oxide<br>and Its Effect on Perovskite Solar Cells. Advanced Materials, 2019, 31, e1805944.                                                         | 21.0   | 152       |
| 5  | Conjugated Polymer–Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite<br>Solar Cells. Advanced Functional Materials, 2019, 29, 1808855.                                                                            | 14.9   | 133       |
| 6  | A Narrowâ€Bandgap nâ€Type Polymer Semiconductor Enabling Efficient Allâ€Polymer Solar Cells. Advanced<br>Materials, 2019, 31, e1905161.                                                                                                      | 21.0   | 121       |
| 7  | Imideâ€Functionalized Heteroareneâ€Based nâ€Type Terpolymers Incorporating Intramolecular Noncovalent<br>Sulfurâ^™â^™â^™Oxygen Interactions for Additiveâ€Free Allâ€Polymer Solar Cells. Advanced Functional Materials<br>2019, 29, 1903970. | , 14.9 | 53        |
| 8  | Side-Chain Engineering of Donor–Acceptor Conjugated Small Molecules As Dopant-Free<br>Hole-Transport Materials for Efficient Normal Planar Perovskite Solar Cells. ACS Applied Materials<br>& Interfaces, 2019, 11, 48556-48563.             | 8.0    | 49        |
| 9  | Formamidiniumâ€Based Lead Halide Perovskites: Structure, Properties, and Fabrication Methodologies.<br>Small Methods, 2018, 2, 1700387.                                                                                                      | 8.6    | 48        |
| 10 | Synergy Effect of Both 2,2,2â€Trifluoroethylamine Hydrochloride and SnF <sub>2</sub> for Highly<br>Stable FASnI <sub>3â^'x</sub> Cl <sub>x</sub> Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800290.                                        | 5.8    | 45        |
| 11 | Perovskite Solar Cells: Alkali Chlorides for the Suppression of the Interfacial Recombination in<br>Inverted Planar Perovskite Solar Cells (Adv. Energy Mater. 19/2019). Advanced Energy Materials, 2019, 9,<br>1970068.                     | 19.5   | 28        |
| 12 | Promising ITO-free perovskite solar cells with WO <sub>3</sub> –Ag–SnO <sub>2</sub> as transparent conductive oxide. Journal of Materials Chemistry A, 2018, 6, 19330-19337.                                                                 | 10.3   | 27        |
| 13 | Highâ€Performance Semitransparent and Bifacial Perovskite Solar Cells with<br>MoO <i><sub>x</sub></i> /Ag/WO <i><sub>x</sub></i> as the Rear Transparent Electrode. Advanced<br>Materials Interfaces, 2020, 7, 2000591.                      | 3.7    | 26        |
| 14 | General Method To Define the Type of Carrier Transport Materials for Perovskite Solar Cells via<br>Kelvin Probes Microscopy. ACS Applied Energy Materials, 2018, 1, 3984-3991.                                                               | 5.1    | 15        |
| 15 | Efficient Perovskite Solar Cells with a Novel Aggregationâ€Induced Emission Molecule as<br>Holeâ€Transport Material. Solar Rrl, 2020, 4, 1900189.                                                                                            | 5.8    | 14        |
| 16 | Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite<br>Solar Cells. Nanomaterials, 2019, 9, 286.                                                                                                | 4.1    | 9         |