Fred Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5906415/publications.pdf

Version: 2024-02-01

all docs

79 3,668 32 59
papers citations h-index g-index

82 82 82 82 3449

times ranked

docs citations

citing authors

#	Article	IF	CITATIONS
1	Trehalose expression confers desiccation tolerance on human cells. Nature Biotechnology, 2000, 18, 168-171.	9.4	363
2	Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. Journal of Virology, 1992, 66, 2952-2965.	1.5	293
3	Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nature Medicine, 2006, 12, 310-316.	15.2	207
4	Presenilin 1 Facilitates the Constitutive Turnover of β-Catenin: Differential Activity of Alzheimer's Disease–Linked PS1 Mutants in the β-Catenin–Signaling Pathway. Journal of Neuroscience, 1999, 19, 4229-4237.	1.7	183
5	Telomerase Activity Is Sufficient To Allow Transformed Cells To Escape from Crisis. Molecular and Cellular Biology, 1999, 19, 1864-1870.	1.1	165
6	Pancreatic Î ² -Cell Neogenesis by Direct Conversion from Mature α-Cells. Stem Cells, 2010, 28, 1630-1638.	1.4	158
7	Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. Journal of Endocrinology, 2000, 166, 103-109.	1.2	120
8	î²-Cell Differentiation from a Human Pancreatic Cell Line in Vitro and in Vivo. Molecular Endocrinology, 2001, 15, 476-483.	3.7	117
9	Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology, 2006, 53, 194-205.	0.3	112
10	Desiccation Tolerance in Human Cells. Cryobiology, 2001, 42, 207-217.	0.3	110
11	Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes, 1999, 48, 745-753.	0.3	109
12	Characterization of ataxia telangiectasia fibroblasts with extended life-span through telomerase expression. Oncogene, 2001, 20, 278-288.	2.6	92
13	Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology, 2004, 49, 62-82.	0.3	85
14	HNF4α Antagonists Discovered by a High-Throughput Screen for Modulators of the Human Insulin Promoter. Chemistry and Biology, 2012, 19, 806-818.	6.2	67
15	Recovery of Human Mesenchymal Stem Cells Following Dehydration and Rehydration. Cryobiology, 2001, 43, 182-187.	0.3	59
16	Branched-Chain Amino Acid-Free Parenteral Nutrition in the Treatment of Acute Metabolic Decompensation in Patients with Maple Syrup Urine Disease. New England Journal of Medicine, 1991, 324, 175-179.	13.9	56
17	Telomere-independent cellular senescence in human fetal cardiomyocytes. Aging Cell, 2005, 4, 21-30.	3.0	54
18	Efficient gene expression in mammalian cells from a dicistronic transcriptional unit in an improved retroviral vector. Gene, 1991, 108, 167-174.	1.0	53

#	Article	IF	CITATIONS
19	Chronic treatment of mitochondrial disease patients with dichloroacetate. Molecular Genetics and Metabolism, 2004, 83, 138-149.	0.5	53
20	Towards gene therapy of diabetes mellitus. Trends in Molecular Medicine, 1999, 5, 165-171.	2.6	52
21	Pharmacological induction of pancreatic islet cell transdifferentiation: relevance to type I diabetes. Cell Death and Disease, 2014, 5, e1357-e1357.	2.7	51
22	Low- and high-temperature vitrification as a new approach to biostabilization of reproductive and progenitor cells. International Journal of Refrigeration, 2006, 29, 346-357.	1.8	50
23	Islet Specific Wnt Activation in Human Type II Diabetes. Experimental Diabetes Research, 2008, 2008, 1-13.	3.8	50
24	Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic \hat{l}^2 -cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7531-7536.	3.3	47
25	High Efficiency Retroviral-Mediated Gene Transduction into CD34 ⁺ Cells Purified from Peripheral Blood of Breast Cancer Patients Primed with Chemotherapy and Granulocyte-Macrophage Colony-Stimulating Factor. Human Gene Therapy, 1994, 5, 203-208.	1.4	46
26	Protection from Cell Death in Cultured Human Fetal Pancreatic Cells. Cell Transplantation, 2000, 9, 431-438.	1.2	40
27	Acid beta-galactosidase: a developmentally regulated marker of endocrine cell precursors in the human fetal pancreas. Journal of Clinical Endocrinology and Metabolism, 1994, 78, 1232-1240.	1.8	38
28	Isolation and characterization of a cell line from the epithelial cells of the human fetal pancreas. Cell Transplantation, 1997, 6, 59-67.	1.2	37
29	PDX-1 and Cell-Cell Contact Act in Synergy to Promote δ-Cell Development in a Human Pancreatic Endocrine Precursor Cell Line. Molecular Endocrinology, 2000, 14, 814-822.	3.7	37
30	î²-cell regeneration: Neogenesis, replication or both?. Journal of Molecular Medicine, 2008, 86, 247-258.	1.7	36
31	Adult Pancreatic Alpha-Cells: A New Source of Cells for Beta-Cell Regeneration. Review of Diabetic Studies, 2010, 7, 124-131.	0.5	34
32	c-Myc Controls Proliferation <i>Versus</i> Differentiation in Human Pancreatic Endocrine Cells. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3475-3485.	1.8	33
33	Development of a VSV-G protein pseudotyped retroviral vector system expressing dominant oncogenes from a lacO-modified inducible LTR promoter. Gene, 1996, 182, 145-150.	1.0	32
34	T-cadherin (Cdh13) in association with pancreatic \hat{l}^2 -cell granules contributes to second phase insulin secretion. Islets, 2011, 3, 327-337.	0.9	31
35	CENP-A, a protein required for chromosome segregation in mitosis, declines with age in islet but not exocrine cells. Aging, 2010, 2, 785-790.	1.4	31
36	Phenothiazine Neuroleptics Signal to the Human Insulin Promoter as Revealed by a Novel High-Throughput Screen. Journal of Biomolecular Screening, 2010, 15, 663-670.	2.6	30

#	Article	IF	CITATIONS
37	Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes. BMC Endocrine Disorders, 2002, 2, 2.	0.9	28
38	VACTERL Association With High Prenatal Lead Exposure: Similarities to Animal Models of Lead Teratogenicity. Pediatrics, 1991, 87, 390-392.	1.0	28
39	The Id3/E47 Axis Mediates Cell-Cycle Control in Human Pancreatic Ducts and Adenocarcinoma. Molecular Cancer Research, 2011, 9, 782-790.	1.5	26
40	Id3 upregulates BrdU incorporation associated with a DNA damage response, not replication, in human pancreatic \hat{l}^2 -cells. Islets, 2011, 3, 358-366.	0.9	24
41	Interaction of vesicular stomatitis virus-G pseudotyped retrovirus with CD34+ and CD34+CD38a^' hematopoietic progenitor cells. Gene Therapy, 1997, 4, 918-927.	2.3	23
42	Gene therapy for diabetes: strategies for \hat{l}^2 -cell modification and replacement. , 1997, 13, 209-246.		22
43	Identification of Alverine and Benfluorex as HNF4α Activators. ACS Chemical Biology, 2013, 8, 1730-1736.	1.6	22
44	High-throughput screening and bioinformatic analysis to ascertain compounds that prevent saturated fatty acid-induced \hat{l}^2 -cell apoptosis. Biochemical Pharmacology, 2017, 138, 140-149.	2.0	22
45	Different roles for cytosine methylation in HLA class ii gene expression. Immunogenetics, 1985, 22, 427-440.	1.2	21
46	Analysis of a human fetal pancreatic islet cell line. Transplantation Proceedings, 1997, 29, 2219.	0.3	20
47	Cell-Based Therapies for Diabetes: Progress towards a Transplantable Human \hat{l}^2 Cell Line. Annals of the New York Academy of Sciences, 2003, 1005, 138-147.	1.8	20
48	\hat{I}^2 -cell replication and islet neogenesis following partial pancreatectomy. Islets, 2011, 3, 188-195.	0.9	17
49	Gene therapy techniques. Current Opinion in Biotechnology, 1991, 2, 840-844.	3.3	16
50	Differential Integrin Expression Facilitates Isolation of Human Fetal Pancreatic Epithelial Cells. Cell Transplantation, 1994, 3, 307-313.	1.2	16
51	Derivation of a Retinoid X Receptor Scaffold from Peroxisome Proliferatorâ€Activated Receptorâ€Î³ Ligand 1â€Di(1 <i>H</i> â€indolâ€3â€yl)methylâ€4â€trifluoromethylbenzene. ChemMedChem, 2009, 4, 1106-1119.	1.6	16
52	PAR2 regulates regeneration, transdifferentiation, and death. Cell Death and Disease, 2016, 7, e2452-e2452.	2.7	16
53	Antipsychotics activate the TGF \hat{I}^2 pathway effector SMAD3. Molecular Psychiatry, 2013, 18, 347-357.	4.1	15
54	Liver fat storage is controlled by HNF4α through induction of lipophagy and is reversed by a potent HNF4α agonist. Cell Death and Disease, 2021, 12, 603.	2.7	14

#	Article	IF	CITATIONS
55	Efficient \hat{l}^2 -cell regeneration by a combination of neogenesis and replication following \hat{l}^2 -cell ablation and reversal of pancreatic duct ligation. Stem Cells, 2013, 31, 2388-2395.	1.4	13
56	Diabetes Mellitus-Cell Transplantation and Gene Therapy Approaches Current Molecular Medicine, 2001, 1, 273-286.	0.6	12
57	No Pancreatic Endocrine Stem Cells?. New England Journal of Medicine, 2004, 351, 1024-1026.	13.9	10
58	Induction of \hat{I}^2 -cell replication by a synthetic HNF4 \hat{I}_\pm antagonist. Stem Cells, 2013, 31, 2396-2407.	1.4	10
59	Overexpression of Trehalose Synthase and Accumulation of Intracellular Trehalose in 293H and 293FTetR:Hyg Cells. Cryobiology, 2001, 43, 106-113.	0.3	9
60	HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion. Biochemical and Biophysical Research Communications, 2007, 355, 331-337.	1.0	8
61	Maternal embryonic leucine zipper kinase regulates pancreatic ductal, but not \hat{l}^2 -cell, regeneration. Physiological Reports, 2014, 2, e12131.	0.7	7
62	A potent HNF4α agonist reveals that HNF4α controls genes important in inflammatory bowel disease and Paneth cells. PLoS ONE, 2022, 17, e0266066.	1.1	7
63	Gene therapy for diabetes. Frontiers in Bioscience - Landmark, 2001, 6, d175-191.	3.0	6
64	Insulin acts as a repressive factor to inhibit the ability of PAR2 to induce islet cell transdifferentiation. Islets, 2018, 10, 201-212.	0.9	6
65	Sources of \hat{l}^2 -cells for human cell-based therapies for diabetes. Cell Biochemistry and Biophysics, 2004, 40, 103-112.	0.9	5
66	Gene Therapy. JAMA Pediatrics, 1993, 147, 1167.	3.6	4
67	Provirus-Anchored Long-Range (PAL) Mapping of Mammalian Genomes. Genomics, 1993, 15, 305-310.	1.3	3
68	Growth and Genetic Modification of Human β-Cells and β-Cell Precursors., 2000, 22, 99-120.		3
69	Sources of \hat{l}^2 -Cells for Human Cell-Based Therapies for Diabetes. Cell Biochemistry and Biophysics, 2004, 40, 103-112.	0.9	3
70	Long-term oral administration of an HNF4α agonist prevents weight gain and hepatic steatosis by promoting increased mitochondrial mass and function. Cell Death and Disease, 2022, 13, 89.	2.7	3
71	Approaches to Inducing β-Cell Regeneration. Biomedicines, 2022, 10, 571.	1.4	3
72	Gene therapy for diabetes: strategies for \hat{l}^2 -cell modification and replacement., 1997, 13, 209.		2

#	Article	IF	Citations
73	High prenatal lead levels and congenital anomalies. American Journal of Medical Genetics Part A, 1991, 41, 388-388.	2.4	1
74	Terapia gênica para o diabetes. Arquivos Brasileiros De Endocrinologia E Metabologia, 2001, 45, 96-107.	1.3	1
75	Sources of \hat{l}^2 -cells for human cell-based therapies for diabetes. Cell Biochemistry and Biophysics, 2004, 2004, 103-112.	0.9	0
76	Gene Therapeutic Approaches for \hat{l}^2 -Cell Replacement. Growth Hormone, 2001, , 373-400.	0.2	0
77	Basic Genetic Principles. , 2004, , 1-15.		O
78	Coordinated Regulation by Shp2 Tyrosine Phosphatase of Signaling events Controlling Insulin Biosynthesis in I²â€cells. FASEB Journal, 2009, 23, 197.1.	0.2	0
79	Basic Genetic Principles. , 2011, , 1-16.		0